TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsSeoulCenterforFinanceandInnovationPublicDisclosureAuthorizedPublicDisclosureAuthorizedPublicDisclosureAuthorizedPublicDisclosureAuthorized©2023InternationalBankforReconstructionandDevelopment/TheWorldBank1818HStreetNWWashingtonDC20433Telephone:202-473-1000Internet:www.worldbank.orgThisworkisaproductofthestaffofTheWorldBankwithexternalcontributions.Thefind-ings,interpretations,andconclusionsexpressedinthisworkdonotnecessarilyreflecttheviewsofTheWorldBank,itsBoardofExecutiveDirectors,orthegovernmentstheyrepresent.TheWorldBankdoesnotguaranteetheaccuracy,completeness,orcurrencyofthedataincludedinthisworkanddoesnotassumeresponsibilityforanyerrors,omissions,ordiscrepanciesintheinformation,orliabilitywithrespecttotheuseoforfailuretousetheinformation,methods,processes,orconclusionssetforth.Theboundaries,colors,denominations,andotherinformationshownonanymapinthisworkdonotimplyanyjudgmentonthepartofTheWorldBankconcerningthelegalstatusofanyterritoryortheendorsementoracceptanceofsuchboundaries.NothinghereinshallconstituteorbeconstruedorconsideredtobealimitationuponorwaiveroftheprivilegesandimmunitiesofTheWorldBank,allofwhicharespecificallyreserved.RightsandPermissionsThematerialinthisworkissubjecttocopyright.BecauseTheWorldBankencouragesdisseminationofitsknowledge,thisworkmaybereproduced,inwholeorinpart,fornoncommercialpurposesaslongasfullattributiontothisworkisgiven.Anyqueriesonrightsandlicenses,includingsubsidiaryrights,shouldbeaddressedtoWorldBankPublications,TheWorldBankGroup,1818HStreetNW,Washington,DC20433,USA;fax:202-522-2625;e-mail:pubrights@worldbank.org.TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsSeoulCenterforFinanceandInnovationjune2023WorldBankGroupFinance,CompetitivenessandInnovationGlobalPracticeAcknowledgmentThisreportwaspreparedbyateamledbyAnwarAridi(SeniorPrivateSectorSpecialist,WorldBank’sFinanceCompetitivenessandInnovationGlobalPractice),whichincludedPierre-AlexandreBalland(UtrechtUniversity&ArtificialandNaturalIntelligenceToulouseInstitute),RonBoschma(UtrechtUniversityandUniversityofStavanger)asleadauthors,andKibumKim(PrivateSectorSpecialist,WBFCIGP).ThenotebenefitedfromtheguidanceoftheWorldBankManagement,ZaferMustafaoglu(PracticeManager)andJasonAllford(CountryManager),andfromfeedbackandcommentsprovidedbyAlvaroGonzalez(LeadEconomist,WBFCIGP),MarcioCruz(PrincipalEconomist,IFC),andJona-thanDavidTimmis(Economist,WBEAPChiefEconomistUnit).RyosunJang(Consultant,WB)andWilliamShaw(Consultant,WB)editedthereport.ThisknowledgenotewasmadepossiblebyagrantfromtheKoreanMinistryofEconomyandFi-nance,providedthroughtheSeoulCenterforFinanceandInnovationandtheWBGKoreaOffice.4TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsContentsAcknowledgment............................................................................................................4ExecutiveSummary.........................................................................................................601Introduction.............................................................................................................902Therelatednessframework.......................................................................................1203IdentifyingTwinTransitionTechnologiesandtheTwinTransitionSpace......................1404TheglobalevolutionoftheTwinTechnologies...........................................................194.1Greentransitiontechnologies...............................................................................204.2Digitaltransitiontechnologies..............................................................................2205PerformanceofcitiesintheTwinTransition..............................................................2606PotentialsofcitiesinEastandSouthEastAsiainTwinTransitiontechnologies............346.1RelatednessDensitymapforgreentechnologies.....................................................366.2RelatednessDensitymapfordigitaltechnologies....................................................3907GrowthofTwinTransitiontechnologies....................................................................4108Identifyingcomplementaritieswithotherregions.....................................................4709Conclusion...............................................................................................................51References...................................................................................................................55Appendices.................................................................................................................601.Namesofthe128citiesinEastandSouthEastAsia.......................................................612.Measuringrelatednessandrelatednessdensity............................................................643.Diversificationmodels..............................................................................................654.Keyapplicantsintheworldin27TwinTransitiontechnologies........................................695.MapsofRelatednessDensityofAsiancitiesfor27TwinTransitiontechnologies................706.Listofcomplementaritiesof128Asiancitiesfor27TwinTransitiontechnologies................71TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents5ExecutiveSummaryTheglobaleconomyisundergoingtwotechnologicaltransitions,digitalandgreen,alsoreferredtoastheTwinTransitions.AbsorbingorinventingthetechnologiesnecessaryfortheTwinTran-sitionswillbecriticaltoachievingrapidandsustainablegrowthineconomiesandregionsacrosstheglobe.Absorbingforeigntechnologyandinventingnewtechnologiesismorefeasiblewhenaregionalreadyemploysrelatedtechnologies.Forexample,advancesincloudcomputingaremorelikelytooriginatefromregionsthatareintensivelyinvolvedincomputerandinternettech-nologiesthaninregionsthatspecializeinotheractivities.Thus,aregion’sabilitytoparticipateinthedigitalandgreentransitionswilldependontheextenttowhichitalreadyusestechnologythatisemployedinactivitiesrelatedtothoseinvolvedintheTwinTransitions.ManyregionshavedemonstratedstrongpolicyinterestinpreparingforandpromotingtheTwinTransition,buthowreadyaretheyandwhohastheknowledgeandtechnologicalcapabilitiestoleadsuchtransition?Thepurposeofthispaperisto(i)explorehowtechnologicalrelatednessconditionstheprogressinthedigitalandgreentransitionsinAsiancities,(ii)identifythecitiesthatarecurrentlyleading,aswellasthosethataremostlikelytotakeaprominentroleindevelopingandimplementingtheTwinTransitiontechnologiesinthecomingyears,and(iii)determinewhichofthesecitieshasthepotentialtoleveragecomplementaritiestodevelopgreenanddigitaltechnologies.Thereportconsiders128citiesin6EastAsianeconomies(China,DemocraticPeople'sRepublicofKorea,Japan,Mongolia,RepublicofKorea,andTaiwan)and11SoutheastAsianeconomies(Brunei,Cambodia,Indonesia,LaoPeople’sDemocraticRepublic,Malaysia,thePhilippines,Sin-gapore,Thailand,Timor-Leste,andVietnam).Basedonareviewofpreviousliterature,27digitalandgreentechnologiesareselected,andpatentdataanalyzedtomeasuretheextenttowhichfirmsinthesecitiesemploytechnologiesthatarerelatedtothedigitalandgreentechnologies.ARelatednessDensity(RD)scoreiscalculatedtodeterminethedegreetowhichthetechnologieseachcityisspecializedinarerelatedtoeachofthegreenanddigitaltransitiontechnologies.ThehighertheRelatednessDensityscore,thegreateristhecity’spotentialtodevelopthegreenordigitaltechnologymeasured.Theresearchproduceshigh-enddatavisualization,mappinganalytics,andeconometricassess-mentoftheeffectofRelatednessDensityonthegrowthintonewTwinTransitiontechnologies.Thekeyfindingsare:——Mostdigitaltechnologiesarenotcloselyrelatedtogreentechnologies,andviceversa.How-6TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsever,sometwintransitiontechnologiessharecapabilitieswithbothdigitalandgreentech-nologies.Asanexample,smartgridsturnouttobeakeybridgingtechnologythatbuildsontechnologiesthatbelongtoboththedigitalandgreentransitions.——TheEUtakesupthelargestshareofgreenanddigitaltechnologies,buttheirrelativesharesaredeclining.ThisisincontrastwithChina,whichhasincreaseditsglobalshareingreenanddigitaltechnologies,especiallyinmorerecentyears.——Forthe128citiesinEastandSouthEastAsia,thelargestnumberofpatentsproducedoverthe2017-2021periodingreentechnologieswasinbatteries,andindigitaltechnologies,thelargestnumberwasinInternetofthings.——EconomiesinEastandSouthEastAsiathatarerankedhighintermsofthedigitaltransitionalsotendtoberankedhighintermsofthegreentransition;China,JapanandRepublicofKoreascorehighestintheTwinTransition,whileMacaoSAR,Mongolia,CambodiaandDemocraticPeople’sRepublicofKoreascorelowest.——Thepaperidentifies4typesofcitiesintermsoftheirpatentintensityinTwinTransitiontech-nologies:twinleader,greenleader,digitalleader,andfollower.AlargemajorityofAsiancitiesarefollowers,andonlyalimitednumberofcitiesaregreenordigitalleadersonly,withoutbeingaleaderinboth.TwinleadersarefoundinChina(7cities),Japan(8cities)andRepublicofKorea(10cities).Citiesinthecatching-upeconomiesinEastAsialikeMalaysia,Thailand,VietnamandthePhilippinesbelongtothecategoryoffollowers.Itisimportanttonotethatbyfocusingonpatentdatathisreportfocusesontechnologycreationratherthanadoption.ThegeographyoftheTwinTransitiontechnologyadoptioninAsiamightlookdifferent.——EconometricmodelsareruntoassesstheeffectofRelatednessDensityonthegrowthofTwinTransitiontechnologiesincities.Theresultshowsthatdigitalcapabilitiesplayanimportantroleinthedevelopmentofbothdigitalandgreentechnologies.Greencapabilitiesarepositive-lyrelatedtothedevelopmentofnewgreentechnologies,butdonotseemtobestronglylinkedtothedevelopmentofdigitaltechnologies.——TheprincipleofrelatednessisusedtoidentifythecitieswiththestrongestpotentialtoleadtheraceinTwinTransitiontechnologies.Foreachdigitalandgreentechnology,aRelatednessDensitymapofcitiesinEastandSouthEastAsiaispresented.Thesemapsrepresentthetech-nologicalRelatednessDensityaroundaTwinTransitiontechnologyineachcity,indicatingthematchingofthetechnologytoothertechnologiesinwhichthecityisspecialized.Forallofthe27RelatednessDensitymaps(oneforeachtechnology),thehigherthepotentialofacityinatechnology,asshownbytheRelatednessDensitymeasure,themorespecializedthecityisinthattechnology.ThemapsindicatethatthepotentialtodevelopdigitaltechnologiesismorespatiallyconcentratedinEastandSoutheastAsiathaninthecaseofgreentechnologies.Forexample,Japanesecitiestendtoshowhighpotentialtodevelopnewbatterytechnology(aswellasothergreentechnologies),withfourofthetopfivecities.Bycontrast,Japanesecitieshavelittlepresenceindigitaltechnologies,whereChinaisdominant—ChinesecitiestakeupsevenofthetoptenplacesfortheInternetofThingsandartificialintelligence.TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents7——Acomplementarityindicator(AddedRelatednessDensity)isusedtoidentifypotentialpartnercitiesthatcanprovidecomplementarycapabilitiestoacitytodevelopagreenordigitaltech-nology.Foreachtechnologyandcity,thetop-5citiesareidentifiedthatcanprovidethehighestamountofcomplementarycapabilitiesthatthecityitselfismissingandthatarerelevantforthecitytogrowintotheTwinTransitiontechnology.Thecitieswiththegreatestcomplementa-rycapabilitiesineachtechnologydiffersbythecityabsorbingthesetechnologies,althoughinsomecasesthereisaconsiderableoverlapofthemostrelevantpartners.Andformanycities,thecitieswiththegreatestcomplementarycapabilitiesarelocatedinothercountries.ThisworkunderlinestheimportanceofcitiespromotingTwinTransitiontechnologiesinwhichtheyhavehighpotential.Localcapabilitiesconditionwhichparticulartransitionscanbesup-portedeffectivelybypolicy.ThisimpliesthatcitiesshouldrefrainfromdevelopingTwinTransitiontechnologiesinwhichtheyhavenorelevantcapabilities(Ballandetal.2019).Citieshavedifferentcapabilities,andtherefore‘one-size-fits-all’policiesshouldbeavoided.Forthecatching-upeconomiesthatarelaggingbehindtheTwinTransition,policycanbedesignedtohelpcitiesconnectwithotherregionstogetaccesstorelevantcapabilities.Thecomplementar-ityindicator(AddedRelatednessDensity)canbeusedtoidentifycitiesthatcouldprovidecom-plementarycapabilitiestodevelopagreenordigitaltechnology.Intermsofprioritizingthefocusareas,theempiricalanalysisshowsthatbuildingcapabilitiesindigitalhasahigherpotentialtogrowintobothdigitalandgreentechnologies.Therefore,connectingwithcitiesthathavehighre-latednessinthedigitalspacecanbemoredesirableintheshortrun.Governmentcanaimtofacil-itateuniversity-industrylinkagesandestablishnewcollaborationswithothercities,institutions,anduniversities.ThemobilityofentrepreneursandworkerstoothercitiescanalsohelpfirmsandcitiesaccumulateabsorptivecapacityandskillsetsrequiredfortheTwinTransitiontechnology.Tosomeextent,attractingexternalfirmssuchasmultinationalenterprises(MNEs)andskilledmigrantstotheregionmayalsohelp.8TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents01IntroductionTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents9RecentlymanyeconomiesandregionshavedemonstratedstronginterestinparticipatingintheTwinTransition(TWI20502019;Balogunetal.2020;Truby2020;Amorosoetal.2021;Papadavid2021;EuropeanCommission2022b).Theterm‘TwinTransition’referstodigitalandgreentransformations,aswellastheunitingofthetwotransitions,whichcouldacceleratenec-essarychanges(Muenchetal.2022).Successfulgreenanddigitaltransitionswillaffectthelivesofallcitizens,helptackleclimatechange,andreshapeoursociety.Developingcapabilitiesandtechnologysovereigntyindigitalandgreentechnologiesalsoisconsideredtobecrucialtoremaincompetitiveinthe21stcentury,tocreatejobs,buildresilientsocieties,andmeetambitioussus-tainabilitygoals.UnlockingthepotentialofsynergiesbetweentheTwinTransitionsandmitigatingpossiblenegativeeffectsrequiresadeepunderstandingofhowthetwotransitionscanmutuallyreinforceeachother,andhowtomitigatepossibletensionsbetweenthetwo.DespitetherisingimportanceoftheTwinTransitions,thereislittleunderstandingofwhicheconomiesandcitieshavethepotentialtodeveloptherequisitetechnologiesandtheinter-playbetweenthedigitalandgreentechnologies.Inacademicresearch,thefocushasbeeneitheronthedigitalorthegreentransition,andthereislittleresearchontheirinterplay,andfindingsaremixed.Thereisconcernthatsomedigitaltechnologieshavesuchpervasiveenvi-ronmentalfootprintsthattheymightimpedeachievingthepolicytargetsofthegreentransition(Vinuesaetal.2020;DelRioCastroetal.2021).Langeetal.(2020)andJones(2018)concludethatdigitalizationtendstoincreaseenergyconsumption.Diemeretal.(2022)focusontheenvi-ronmentalpollutionresultingfromtheextractionofcriticalmaterialsusedinthedigitaltransition.However,otherstudiessuggestthatdigitaltechnologiescontributepositivelytotheenvironment(e.g.Rolnicketal.2019;DelRioCastroetal.2021).Ciceroneetal.(2022)findapositiveeffectofAIasanenablerforregionstodevelopgreentechnologies.InarecentstudyonEuropeanregions,Bianchinietal.(2022)findthatlocalgreentechnologiesreducegreenhouseemissions,especiallyinregionswell-endowedwithdigitaltechnologies.Accordingtothisstudy,digitaltechnologies(inparticularbigdataandcomputinginfrastructures)haveanegativeimpactontheenvironment,butthisdetrimentaleffectongreenhouseemissionsisweakenedinregionsthatarestrongingreentechnologies.TheobjectiveofthisreportistoidentifythecitiesleadingtheTwinTransitionorwithastrongpotentialtoleadinthecomingyears,andthecitiesthatothercitiesshouldconnecttoinordertodevelopgreenanddigitaltechnologies.128citiesin6EastAsianeconomies(China,Japan,Mongolia,DemocraticPeoplesRepublicofKorea,RepublicofKorea,andTaiwan)and1101Introduction10TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsSouthEastAsianeconomies(Brunei,Myanmar,Cambodia,Timor-Leste,Indonesia,LaoPDR,Ma-laysia,thePhilippines,Singapore,Thailand,andVietnam)areanalyzed.Appendix1providesthefulllistofcities.Patentdocuments,machinelearningtechniques,andtherelatednessframeworkdevelopedinthefieldofeconomicgeographyandeconomiccomplexityareusedtostudytheTwinTransitioninEastandSouthEastAsia.Thereportprovideshigh-enddatavisualizationsandan-alyticstobetterleverageknowledgeinthesedifferentecosystemsandtheconnectionsbetweenthem.Thetargetaudienceofthisreportincludespolicymakers,practitioners,andglobalinvestorswhoaimtoanswerthefollowingquestions.Whatarethemostpromisingstrategicinvestmentsingreenanddigitaltechnologies?HowshouldresourcesbeallocatedacrosscitiesinEastandSouthEastAsiatopromotedigitalandgreentechnologies?Whichcitiesholdthepotentialtofur-therpromotegreenanddigitaltechnologicaldevelopment?Thisresearchprovidesinsightsinto:(i)whichtechnologiescitiesneedtoinvestingiventheirpotentialsandcapabilities,(ii)whichgreenanddigitaltechnologiescanbecombinedtoservebothpolicyagendas,(iii)whichcollabo-rationspolicymakerscanpromotebetweenwhichcitiesinordertoactivateunexploitedcomple-mentarities,and(iv)whichorganizationsintheircitiescanbeinvolvedandtargetedtodevelopthegreenanddigitalagendainAsia.TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents1102Therelatednessframework12TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsTherelatednessframeworkisappliedtoidentifywhichcitiesinEastandSouthEastAsiahaveahighpotentialtodevelopdigitalandgreentechnologies,giventheirexistingcapabilities.WefollowthemethodologydevelopedbyBallandandBoschma(2021b)toidentifysuchcom-plementaritiesacrosscitiesinEastandSouthEastAsiaandtoselectpotentialpartnersofcitiesthatcanmakeadifferenceinmakingtheTwinTransition.ItisimportantformetropolitanareastoidentifypotentialpartnerregionsthatcanhelpthemtodevelopTwinTransitiontechnologies.Thisimpliesthereisastrongneedtoidentifypartnerregionsthatcanprovidecitiesaccesstocomplementaryknowledgethatislocallymissingbutcanenhancetheirprobabilitytodevelopandparticipateinthegreenanddigitaltransitions.Theprincipleofrelatednessarguesthatlocalcapabilitiesconditionwhichnewactivitieswillbefeasibletodevelopinregions(Boschma2017;Hidalgoetal.2018).Localcapabilitiesprovideopportunitiesbutalsosetlimitstoregionaldiversificationandgrowth.Ifaregionlacksthecapa-bilitiesrequiredforanewactivity,itwillbehardertodevelop.Thisrelatednessframeworkbuildsoninsightsfromeconomiccomplexityandeconomicgeographyandappliesnetworkscience,bigdata,andmachinelearningtounderstandeconomicdevelopment(Ballandetal.2022).Onekeyfindingisthatinventors,companies,andregionsdevelopnewproductsandtechnologiesbyrecombiningpre-existingcapabilities.Thehigherthedegreeofrelatednessbetweenanentityandaneweconomicactivity,thehighertheprobabilityofsuccessfuldiversification.Thereisoverwhelmingevidencethatre-gionsaremorelikelytodevelopnewactivitiesthatarerelatedtotheirexistingactivities(Hidalgoetal.2007;Neffkeetal.2011),nomatterwhatactivities(newproducts,industries,technologies,occupations)andrelatednessmeasures(basedonproducts,technologies,skills,input–outputrelations)areconsidered(Boschma2017).Patentdataisusedtoinvestigatethepotentialofregionstodevelopnewtechnologies.Patentdatacontainsawealthofinformationtoanswerthesequestionswithmodernmachinelearningtools.Rigby(2015)andBoschmaetal.(2015)usemeasuresofrelatednessbetweenpatentclassestodescribetheriseofnewtechnologiesincities.Theyconstructatechnologyspacetodeterminerelatednessbetweentechnologies,basedontheco-occurrenceoftechnologyclassesonapat-entdocumentoroncitationsacrosstechnologyclasses.Theseandotherstudiesfindsystematicevidencethattechnologiesrelatedtolocaltechnologieshaveahigherprobabilitytoentermetro-politanregionsintheUSandintheEU(Ballandetal.2019).02TherelatednessframeworkTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents13IdentifyingTwinTransitionTechnologiesandtheTwinTransitionSpace0314TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents16greenand11digitaltechnologiesareselectedthatcouldbeassociatedwiththeTwinTran-sition(thedigitalandgreentransitionsarebrieflydescribedinBox1).Thisselectionisbasedonanexplorativeinvestigationofstudiesthatidentifykeydigitalandgreentechnologiesusingpatentdata(HaščičandMigotto2015;Ménièreetal.2017;CiffolilliandMuscio2018;Fushimietal.2018;MontresorandQuatraro2019;VandenBergeetal.2020;BallandandBoschma2021a;SantoalhaandBoschma2021;Ciceroneetal.2022).ThelistoftechnologiesinTable1representsthemaintechnologiesusuallyassociatedwiththeTwinTransitionbutisbynomeansexhaustive.Itisalsoimportanttonotethattodate,thereisnoconsensusonwhatconstitutesthekeygreenordigitaltechnologies.Sometechnologies,suchasnucleartechnology,forinstance,oftengeneratedis-cussionsonwhethertheyaregreenornot.Also,somegreentechnologiessuchassmartgridsorbatteriescouldbeclassifiedasdigitaltechnologies.Table1.TwinTransitiontechnologiesDigitaltechnologiesAdditivemanufacturingArtificialintelligenceAugmentedrealityAutonomousrobotsAutonomousvehiclesBlockchainCloudcomputingCybersecurityQuantumcomputersSmartgridsInternetofthingsGreentechnologiesAir&waterpollutionreductionWastemanagementWater-relatedadaptationtechnologiesWindenergySolarenergyGeothermalenergyMarineandhydroenergyGreentransportsBiofuelsBatteriesNuclearenergyOtherenergystorageHydrogenGreenhousesgascaptureEfficientpowerandcombustionGreenbuildings03IdentifyingtwinTransitionTechnologiesandtheTwinTransitionSpaceTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents15Box1.DigitalandgreentechnologytransitionThedigitaltransitionencompassesmanydimensions,suchasArtificialIntelligenceandIn-dustry4.0.Digitaltechnologieshaveapervasiveeffectoneconomies(Liaoetal.2017).Whilepreviousdigitalrevolutionshavebeenassociatedwiththeautomationofrepetitivephysicalwork,thecurrentdigitaltransformationisalsoabouttheautomationofnonroutineworktasks.Studiesareassessingtheconsequencesforlabormarkets,inparticularthetypesofjobsandworktasksthatmaybedisplacedoratrisk(Autor2015;FreyandOsborne2016),andhowthedigitaltran-sitionimpactsthegeographyofknowledgeproductionandmanufacturing(Ménièreetal.2017;CiffolilliandMuscio2018;Buarqueetal.2020;BallandandBoschma2021a).Thegreentransitionhasattractedlotsofattentionfromscholarsandpractitionersalike(Eu-ropeanCommission2022a).Technologiesareconsideredtoplayakeyroleintacklingclimatechange,inconjunctionwitheconomic,political,andsocialfactors.Thereisincreasingawarenessthateconomiesandregionsmaydifferintheirabilitytocontributetothesustainabilitytransition(CoenenandTruffer2012).Anemergingfieldofresearchfocusesonthegeographyofgreentech-nologies.Studiesshowthatgreentechnologiesdonotstartfromscratch,butratherdrawonex-istingcapabilitiesinregions(MontresorandQuatraro2019;VandenBergeetal.2020;SantoalhaandBoschma2021).Thesameappliestospecificgreentechnologies,suchasrenewableenergy(Lietal.2021)andfuelcells(Tanner2016).ThepatentscorrespondingtoeachdigitalandgreentechnologyareidentifiedusingPatentCooperationTreaty(PCT)patentdocumentsfromtheOECDREGPAT(2022edition).Classifica-tionsfromtheOECDandWIPO,aswellaspatenttextminingtechniques,areusedtoconnecttheTwinTransitiontechnologiestoabout250,000subclasses,asdefinedbytheCooperativePatentClassification(CPC).ManyofthetechnologiesinTable1couldbeeasilyassignedtopatentsub-classes,butgreaterdifficultieswereexperiencedwithtechnologiessuchasGreenTransports,GreenBuildings,andEfficientPowerandCombustion.Resultspresentedinthepaperusefullcounts.16TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsTheconceptofthetechnologyspaceandameasureofrelatednessareusedtodeterminetheextenttowhichdigitalandgreentechnologiesreinforceeachother,andthuscontributetotheTwinTransition(Rigby2015).Thetechnologyspaceisusedtoidentifythelinksbetweentechnologiesandthewayknowledgeisrecombinedintonewinventions.Thisapproachsupportsanevaluationofhowthegreenanddigitaltransitionsconnectandtowhatextenttheybuildonsimilarcapabilities.ThedegreeofrelatednessbetweenthegreenanddigitaltechnologiesofTable1,aswellastheirdegreeofrelatednesswithallothertechnologies,arecalculated.Theextenttowhichdigitalandgreentechnologiessharesimilarcapabilitiesisindicatedbythedegreeofrelat-edness.Thedegreeofrelatednessbetweentechnologiesismeasuredintwosteps.First,thenumberofco-occurrencesofany2technologiesiscalculated,basedonpatentdocuments.Theideaisthatwhentwotechnologiesarefoundincombinationonmanypatentdocuments,theyrelyonsimilarcapabilities(seefordetailsBoschmaetal.2015).Second,thefrequenciesoftheseco-occurrenc-esarenormalizedbyusingthecosineindex(seefortechnicaldetailsBallandetal.2019).Then,thedegreeofrelatednessbetweentechnologiescanbedepictedasanetworkgraphthatshowsthelinksbetweentechnologicalfields.TheTwinTransitiontechnologyspacerepresentsthetechnologicallinksbetweenalldigitalandgreentechnologies.Eachnodeinthenetworkrepresentsadigitaltechnology(coloredblue)oragreentechnology(coloredgreen).Ifthetwotechnologiesarerelatedtoeachotheraboveacertainthreshold,thetwonodesarelinkedtoeachother.Ifthereisnolink,theydonotsharesimilarcapabilities.TheTwinTransitiontechnologyspaceshowsthatthetwotypesoftechnologiesbelongtoal-mostseparateclusters,butsometechnologiessuchasSmartGridsshareboththedigitalandgreentraits.AsshowninFigure11,fewcrossoversexistbetweenthetwoclusters.Forinstance,greentechnologieslikeMarine&HydroEnergyandAir&WaterPollutionrelyonmanyothergreentechnologiesbutnotondigitaltechnologies.DigitaltechnologieslikeCybersecurityandArtificialIntelligencefollowthesamepattern;therearemanyconnectionsandinterdependenciesbetweenthem,buttheydonotsharesimilarcapabilitieswithgreentechnologies.SmartGrids,however,isakeytechnologythatbuildsontechnologiesthatbelongtoboththedigitalandgreentransition;itisrelatedto4otherdigitaltechnologiesand6greentechnologies.Moreover,mostgreentech-nologies,particularlyNuclearEnergy,SolarEnergy,WindEnergy,andGreenTransports,arealsorelatedtodigitaltechnologies.GreentechnologiesinGreenBuildings,Water-RelatedAdaptation,Hydrogen,EfficientPowerandCombustion,andBatteriesarealsorelatedtodigitaltechnologies,althoughtoalesserextent.AnddigitaltechnologieslikeAdditiveManufacturingandQuantumComputersalsoshowinterdependencieswithgreentechnologies.1Thenetworkgraphpresentedinfigure1onlyshowsthetop5linksperTwinTransitiontechnology.TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents17Figure1.TwinTransitionTechnologySpacehttps://www.paballand.com/asg/wb-asia/transition-space.htmldigitaltechnologiesgreentechnologiescyber-securityinternetofthingsgeothermalenergygreenbuildingswindenergysolarenergynuclearenergygreentransportswastemanagementgreenhousegascapturebatterieshydrogenbiofuelsotherenergystoragemarine&hydroenergyefficientpower&combustionair&waterpollutionreductionwaterrelatedadaptationtechnolo-giescloudcomputingautonomousrobotsautonomousvehiclesaugmentedrealityartificialintelligencequantumcomputerssmartgridsadditivemanu-facturingblockchain18TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents04TheglobalevolutionoftheTwinTechnologiesTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents194.1GreentransitiontechnologiesTheEuropeanUnion(EU),JapanandtheUShavedominatedgreentransitiontechnologiesformanyyears,althoughAsianeconomies'share,especiallyChinahasincreasedrecently.TheEUstillaccountsforthelargestamountofgreenpatents,butitsrelativecontributionisdecliningovertime(Figure2).TherelativesharesoftheUSandJapanarealsoshrinking,especiallyafter2016.In2004,Asianeconomiestookuptoabout24percentofpatentingingreentechnologies,andtheirshareincreasedto42percentin2021.Chinaincreaseditsglobalshareingreentechnologiesfrom1%in2004to19%in2021.Figure2.Velocity:Greentransitiontechnologies,2004-2021https://www.paballand.com/asg/wb-asia/velocity/green-transition-velocity.htmlEastandSouthEastAsiaplayanadvancedroleingreenpatents,andindividualeconomy'simportanceinpatentinggreentechnologiesdifferssubstantiallybythekindoftechnology.AsshowninFigure3,Japanisrankedsecondintheworld(accountingfor21.8%ofglobalgreenpatents),whileChinaisrankedfourth(takingup12.8%),followedbyRepublicofKorea(8.3%).TheEUpresentsthehighestsharesinmanygreentechnologies,suchaswindenergy(57.9%),greentransports(40.9%),biofuels(37.1%),water-relatedadaptation(34.8%),efficientpowerandcombustion(32.8%),marineandhydroenergy(32.5%),airandwaterpollutionreduction(32.3%),wastemanagement(31.9%),otherenergystorage(31.7%),greenbuildings(29.1%),hy-drogen(27.7%),andsolarenergy(23.2%).TheUSshowsthehighestsharesinpatentsingreen-housegascapture(34.7%)andnuclearenergy(33.1%),whileJapantakesupthehighestshareofpatentsinbatteries(27.8%).04TheglobalevolutionoftheTwinTechnologies20TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsFigure3.PerformanceofEastandSouthEastAsiainGreentransitiontechnologiescomparedtootherzones,2017-2021https://www.paballand.com/asg/wb-asia/treemaps/economies/green-transition.htmlEastAsianeconomies(Cambodia,Indonesia,Malaysia,Philippines,Thailand,andVietnam)haveverylittlegreenpatentingactivity.TheEastAsianeconomieshaveatotalof493patentsongreentechnologies,whichisabout1percentoftotalgreenpatentinginEastandSouthEastAsia.PatentingofgreentechnologiesdiffersacrossemergingmarketsinEastAsia.AsdepictedinFigure4,Malaysiashowsthestrongestperformanceinmanygreentechnologies,takingup51%ofgreenpatentsintheseemergingmarkets,followedbyThailand(20%)andVietnam(15%).Malay-siashowshighrelativesharesinsolarenergy(76,3%)andbatteries(64.4%)inparticular.Figure4.Performanceofsomecatching-upeconomiesinEastAsiainGreentransitiontechnologiescomparedtootherzones,2017-2021https://www.paballand.com/asg/wb-asia/treemaps/economies-eap/green-transition.htmlothersTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents214.2DigitaltransitiontechnologiesTheUSaccountsforthelargestshareofthepatentingofdigitaltransitiontechnologies,al-thoughitsrelativecontributiondeclinedover2004-2021(Figure5).RelativesharesoftheEUandJapanareshrinkingaswell.Chinaisrapidlyincreasingitsglobalshareindigitaltechnologiesasitwentfrom1%in2004to25%in2021.In2004,alleconomiesinEastandSouthEastAsiatookuptoabout16percentofpatentingindigitaltechnologies,andtheirshareincreasedtoaround40percentin2021.Figure5.Velocity:Digitaltransitiontechnologies,2004-2021https://www.paballand.com/asg/wb-asia/velocity/digital-transition-velocity.htmlAsingreentechnologies,EastandSouthEastAsiaalsoplayanadvancedroleindigitalpat-enting(Figure6).ChinaisrankedsecondintheworldaftertheUS(accountingfor22.5%ofglobaldigitalpatents),whileJapanisrankedfourth(takingup10.4%),followedbyRepublicofKorea(6.4%).TheUShasthehighestsharesinmanydigitaltechnologies:CloudComputing(38,1%),ArtificialIntelligence(37.9%),Cybersecurity(32.8%),Blockchain(32.3%),InternetofThings(31.7%),QuantumComputers(31.5%),AugmentedReality(30.0%),SmartGrids(28.1%),Auton-omousVehicles(25.7%)andAutonomousRobots(25.0%).TheEUshowsthehighestsharesofpatentsinonedigitaltechnologyonly:AdditiveManufacturing(36.8%).NoAsianeconomytakesupthehighestglobalshareofpatentinginanyofthedigitaltechnologies,butChinaisnotfarbehindtheUSintheInternetofThings(26.7%),Cybersecurity(25.0%),andAutonomousVehicles(20.3%).others22TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsFigure6.PerformanceofEastandSouthEastAsiainDigitaltransitiontechnologiescomparedtootherzones,2017-2021https://www.paballand.com/asg/wb-asia/treemaps/economies/digital-transition.htmlThepatentinglevelingreentechnologiesbytheemergingeconomiesinEastAsiaisrela-tivelylow.Theseeconomies(Cambodia,Indonesia,Malaysia,Philippines,ThailandandVietnam)accountforatotalof537patentsindigitaltechnologies,whichis0.5percentoftotaldigitalpat-entinginEastandSouthEastAsia.Asingreentechnologies,Malaysiashowsthestrongestperfor-manceindigitaltechnologiesamongemergingmarketsinEastAsia,takingupmorethan58%ofdigitalpatents(Figure7).MalaysiaisfollowedbythePhilippines(16%),Thailand(11%),Vietnam(8%)andIndonesia(7%).MalaysiashowshighrelativesharesinCybersecurity(71%),CloudCom-puting(63%),andInternetofThings(62%)inparticular.Figure7.Performanceofsomecatching-upeconomiesinEastAsiainDigitaltransitiontechnologiescomparedtootherzones,2017-2021https://www.paballand.com/asg/wb-asia/treemaps/economies-eap/digital-transition.htmlothersTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents23Thekeypatentapplicants(publicandprivate)forall27digitalandgreentechnologiesindifferentpartsoftheworldareidentified.Figures8and9showtheexamplesofArtificialIntelligenceandSolarEnergy,presentedastreemaps.Treemapsshowtherelativesharesofpatentinginatech-nologybyapatentapplicantasapercentageoftotalpatentinginthattechnologybyallpatentapplicants.Fortheremaining25TwinTransitiontechnologies,linkstothekeyapplicantscanbefoundinAppendix4.FirmsintheUS,China,theEU,JapanandRepublicofKoreaaccountforalargemajorityofpatentapplicationsinartificialintelligence(AI)(Figure8).KeypatentapplicantsinAIintheUSareMic-rosoft,Google,IBM,IntelandQualcomm,buttherearemanymore.InChina,keyplayersarePingAnTechnology,HuaweiandTencent,amongothers.NotethatPingAnTechnologyisthesecondlargestintheworldintermsofnumberofAI-patents,afterMicrosoft,butbeforeGoogle.HuaweiandTencentarerankedhigher(no.5and7respectively)thanUStech-giantsIBMandIntel.Philips(rankedno.7),Siemens,Bosch,Ericsson,DeepmindandNokiaareimportantinnovatorsinAIinEurope.InJapan,majorinnovatorsinAIareNEC(ranked6intheworld),Nippon(rankedno.9),MitsubishiandSony,whileinRepublicofKoreatheseconcernSamsung(fourthlargestworldwideinAIpatents),LGElectronics,KoreaAdvancedInstituteofScienceandTechnology(KAIST)andKoreaElectronicsTechnologyInstitute(KETI).Figure8.KeyapplicantsinArtificialIntelligence,2017-2021https://www.paballand.com/asg/wb-asia/treemaps/applicants/artificial-intelligence.htmlothers24TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsSevenofthetop-10patentapplicantsinSolarEnergyarelocatedinAsia(Figure9).Mitsubishi(Japan)isthenumber1oftheworld,BOETechnologyGroup(China)thenumber2,andSony(Ja-pan)isranked5.Therestofthetop-10includeMurata(Japan),LGElectronics(RepublicofKorea),Kyocera(Japan),Samsung(RepublicofKorea)andWuhanChinaStar(China).LeadingapplicantsinsolarenergyinEuropeareOsram,SonyandMerck.MajorinnovatorsinJapanareMitsubishi,Sony,Murata,KyoceraandSumitomo.KeyinnovatorsinSolarEnergyintheUSareIntel,Sunpower,Qualcomm,GeneralElectric,MicronandMIT.InChina,keyapplicantsareBOETechnologyGroup,WuhanChinaStar,Huawei,BeijingApolloDingRongandShenzhenChinaStar,whileinRepublicofKoreatheseareLGElectronics,SamsungElectronics,LGChemandLGInnotek.Figure9.KeyapplicantsinSolarEnergy,2017-2021https://www.paballand.com/asg/wb-asia/treemaps/applicants/solar-energy.htmlAsshownbeforeinFigures4and7,somecatching-upeconomiesinEastAsia,likeMalaysia,Thai-land,VietnamandthePhilippines,haveverymodestlevelsofpatentinginthetwintechnologies.Andwhentheypatent,itisdonebyasmallnumberofapplicants,suchasMotorolaSolutions,MimosBerhadandIntelinMalaysia,ScgChemicalsandNittoDenkoinThailand,NguyenChiandRynanTechnologiesinVietnam,andValenciaRenatoandFisherRosemountSystemsinthePhil-ippines.othersTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents2505PerformanceofcitiesintheTwinTransition26TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsPerformanceintheTwinTransitiontechnologiesisexploredfor128citiesin17EastandSouthEastAsianeconomies.DefiningurbanagglomerationsinAsiaischallenging,becausenoper-fectconcordancetableisavailable,asforNUTS2regionsinEuropeandforMSA’sintheUS.ThisanalysisusestheUnitedNationsWorldUrbanizationProspects.2Thedatasetincludes128citiesin6EastAsianeconomies(China,Japan,Mongolia,DemocraticPeople’sRepublicofKorea,Re-publicofKorea,andTaiwan)and11SouthEastAsianeconomies(Brunei,Myanmar,Cambodia,Timor-Leste,Indonesia,LaoPDRMalaysia,thePhilippines,Singapore,Thailand,andVietnam)(seethefulllistofcitiesinAppendix1).CitiesfromChina,JapanandRepublicofKorea(OECDTL3level)arematchedtoexistingREGPATclassifications.Forallothereconomies,patentsarematchedtocitiesbasedontheinventoraddressesinpatents.NotalloftheseeconomieshavepatentsinTwinTransitiontechnologies.Thelargestnumberofpatentsover2017-2021ingreentechnologieswererelatedtobatter-ies,andindigitaltechnologiesthelargestnumberwererelatedtotheInternetofthings.AsshowninTable2,batterytechnologytakesupmorethanone-thirdofallgreenpatentswith22,492patents.Thereisalsoahighintensityofpatentingactivityingreentechnologieslike‘Air&Waterpollutionreduction’(9,631patents)and‘SolarEnergy’(9,302patents).AccordingtoTable2,mostpatentingindigitaltechnologieshappensinfieldsliketheInternetofThings(26,326patents),Cybersecurity(15,012patents),AI(12,905patents),AugmentedReality(11,755patents)andAu-tonomousVehicles(10,807patents).2UnitedNations,DepartmentofEconomicandSocialAffairs,PopulationDivision(2018).WorldUrbanizationProspects:The2018Revision,OnlineEdition.Seefile#12:https://population.un.org/wup/Download/.Wemadeaglobalmapbasedoncorrespondingshapefiles:https://www.paballand.com/asg/wb-asia/twin-leaders/worldhttps://www.paballand.com/asg/wb-asia/twin-leaders/world-urban-areas.htmlurban-areas.html05PerformanceofcitiesintheTwinTransitionTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents27Table2.NumberofpatentsinEastandSouthEastAsiancitiesinTwinTransitiontechnologies,2017-2021GreentechnologiesPatentsDigitaltechnologiesPatentsBatteries22,492Internetofthings26,326Air&waterpollutionreduction9,631Cybersecurity15,012Solarenergy9,302Artificialintelligence12,905Greentransports6,987Augmentedreality11,755Greenbuildings3,978Autonomousvehicles10,807Hydrogen3,159Cloudcomputing9,716Wastemanagement2,215Blockchain7,975Biofuels1,383Quantumcomputers3,769Efficientpowerandcombustion884Smartgrids2,756Windenergy818Autonomousrobots2,432Water-relatedadaptationtechnologies766Additivemanufacturing1,931Otherenergystorage691Marineandhydroenergy442Greenhousesgascapture431Nuclearenergy386Geothermalenergy70Total63,635105,384Citiesarecategorizedinto4types(twinleader,greenleader,digitalleader,follower)withregardtotheirpatentintensityinTwinTransitiontechnologies.ThisisshowninFigure10.Citiesaredefinedastwinleaderswhentheybelongtothetop25%ofcitiesinAsiainbothdigitalandgreentechnologies.Digitalleadersarecitiesthatscorerelativelyhighondigitaltechnologies(belongingtothetop25%)withoutbeinggreenleaders(notbelongingtothetop25%).Citiesaredefinedasgreenleaderswhentheyexcelingreentechnologieswithoutbeingadigitalleader.Citiesaredefinedasfollowerswhentheyscorehighneitherondigitalnorongreentechnologies.Figure10.FourtypesofcitiesregardingtheTwinTransitionPatentspercapitaingreentechnologiesPatentspercapitaindigitaltechnologiesGreenLeaderTwinLeaderFollowerDigitalLeader28TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsEconomiesthatarerankedhighintermsofthedigitaltransitionalsotendtoberankedhighintermsofthegreentransition.China,JapanandRepublicofKoreascorehighestintheTwinTransition,whileMacaoSAR,Mongolia,CambodiaandDemocraticPeople’sRepublicofKoreascorelowest(figure11a).WhenanalyzingtheperformanceofAsiancountriesintermsofpatentpercapita(figure11b)weobserveasimilaroverallpattern(thetop6TwinTransitionleadersarethesame),buttherankingslightlyshifts.TheRepublicofKoreascoresthehighestintermsofpatentpercapitainthedigitaltransition,followedbySingaporeandJapan.Intermsofthegreentransition,Japanisstilltheleader,followedthistimebyRepublicofKoreaandSingapore(Chinadropstothe6thposition).Similarly,thereisastrongrelationshipbetweentherankingsofcitieswhencalculatedbasedontheabsolutenumberofpatentsindigitalandgreentechnologies.AsseeninFigure11c,mostcitiesbelongeithertothegroupoftwinleaders,ortothegroupoffollow-ers(suchasmanycitiesinMalaysiaandVietnam).TherealsoarehugedifferencesbetweencitieswithineachcountryconcerningtheirparticipationintheTwinTransition.Thetop-3twinleadersareTokyo(no.1ingreen,no.2indigital),Shenzhen(no.1indigital,no.4ingreen)andSeoul(no.2ingreen,no.3indigital).Notmanycitiespresentthemselvesasgreenleadersonlynorasdigitalleadersonly.ExamplesofgreenleadersaremainlyfoundinJapan,suchasMatsuyama,Mae-bashi-TakasakiandUtsunomiya.ExamplesofdigitalleadersincludecitiesinChinasuchasXian,TianjinandHefei.Atthepatentpercapitalevelweobserveasimilarrelationshipformostcities,withhoweverinterestingdifferencesformanyJapanesecitiesthatoutperformintermsofgreentechnologies.Conversely,manyChinesecitiestendtounderperformintermsofgreentechnolo-giescomparedtotheirlevelofinnovationindigitaltechnologies.Figure11a.RankingsofECONOMIESinEastandSouthEastAsiaintheTwinTransition,basedonthenumberofpatentsindigitalandgreentechnologiesNote:Therankingsarebasedontheabsolutenumberofpatentsindigital(x-axis)andgreentechnologies(y-axis)https://www.paballand.com/asg/wb-asia/twin-leaders/bub-ctry.htmlTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents29Figure11b.RankingsofECONOMIESinEastandSouthEastAsiaintheTwinTransition,basedonthenumberofpatentspercapitaindigitalandgreentechnologieshttps://www.paballand.com/asg/wb-asia/twin-leaders/bub-ctry-pc.htmlFigure11c.RankingsofcitiesinEastandSouthEastAsiaintheTwinTransition,basedonthenumberofpatentsindigitalandgreentechnologieshttps://www.paballand.com/asg/wb-asia/twin-leaders/bub.html30TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsFigure11d.RankingsofcitiesinEastandSouthEastAsiaintheTwinTransition,basedonthenumberofpatentspercapitaindigitalandgreentechnologieshttps://www.paballand.com/asg/wb-asia/twin-leaders/bub-pc.htmlEightcitiesoutofthetop-10indigitaltechnologies(i.e.Shenzhen,Tokyo,Seoul,Beijing,Guangzhou,Shanghai,Kyoto-Osaka-KobeandNanjing)alsobelongtothetop-10ingreentechnologies(theexceptionsareHangzhouandSingapore).Theextentofcorrespondencebe-tweenthecitiesthatrankhighondigitaltechnologiesandthosethatrankhighongreentechnolo-giesalsocanbeseeninFigure12.Ontheleftside,thetop-40ofcitiesinEastandSouthEastAsiaindigitaltechnologiesarelisted,whileontherightside,thetop-40citiesarepresentedintermsoftheirrankingsingreentechnologies.CitiesthathaveamuchhigherrankingindigitalthaningreenareHangzhou,Tapei,Chengdu,Xian,Tianjin,DaeguandHefei.CitiesthathaveamuchlowerrankingindigitalthaningreenareKyoto-Osaka-Kobe,Nagoya,Daejon,XiamenandHiroshima.Eightcitiesofthetop-10ingreen(i.e.Tokyo,Seoul,Kyoto-Osaka-Kobe,Shenzhen,Nanjing,Guangzhou,BeijingandShanghai)alsobelongtothetop-10indigitaltechnologies(theex-ceptionsareDaejonandNagoya).CitiesthathaveamuchhigherrankingingreenthanindigitalareDaejeon,Xiamen,Hiroshima,Cheonan,Maebashi-TakasakiandMatsuyama.CitiesthathaveamuchlowerrankingingreenthanindigitalareHangzhou,Tapei,Chengdu,Daegu,HefeiandTianjin.TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents31Figure12.PerformanceofcitiesintheTwinTransition:top-40rankingsbasedonnumberofpatentsindigital(left)andgreentechnologies(right),2017-2021AlargemajorityofAsiancitiesarefollowers,andonlyalimitednumberofcitiesaregreenor/anddigitalleaders.ThenumberofAsiancitiesthataredefinedastwinleadersisquitesub-stantial;twinleadersarefoundinChina(Beijing,Shenzhen,Hangzhou,Nanjing,Weifang,XiamenandGuangzhou),Japan(Koriyama,Utsunomiya,Nagano,Tokyo,Shizuoka-Hamamatsu,Nagoya,Kyoto-Osaka-KobeandTakamatsu)andRepublicofKorea(Seoul,Incheon,Ulsan,Gumi,Gwangju,Jeonju,Daejon,Cheongju,CheonanandJeju).Only8citiespresentthemselvesasgreenleaderswhilenotbeingadigitalleader(allJapanesecitiesofMaebashi-Takasaki,Niigata,Toyama,Okaya-ma,Hiroshima,Matsuyama,KochiandNagasaki).Andonly8citiesaredefinedasdigitalleaderswhilenotbeingagreenleader:Wuhan,Shanghai,HongKongSAR,Kanazawa,Naha,Daegu,Singa-poreandTaipei.Citiesinthecatching-upeconomiesinEastAsialikeMalaysia,Thailand,VietnamandthePhilippinesbelongtothecategoryoffollowers.Somecitiesinthoseeconomiesdopatentintwintechnologiesbuttheircapabilitiesareconcentratedinasmallnumberofapplicants.33ExamplesareKualaLumpur(MimosBerhadandMotorolaSolutions)andGelugor(MotorolaSolutionsandOsram)inMalaysia,Bangkok(NittoDenkoandScgChemicals)inThailand,HoChiMinhCityinVietnam,andManila(Fisher-RosemountSystems)inthePhilippines.32TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsFigure13.TwinTransitiontypologyofcitiesinEastandSouthEastAsia,basedonthenumberofpatentspercapitaindigitalandgreentechnologies,2017-2021https://www.paballand.com/asg/wb-asia/twin-leaders/treemap.htmlTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents3306PotentialsofcitiesinEastandSouthEastAsiainTwinTransitiontechnologies34TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsTheprincipleofrelatednesscanbeusedtoidentifythecitieswiththestrongestpotentialtoleadtheraceinTwinTransitiontechnologies.Thisprinciplearguesthatcitiesdevelopnewtech-nologiesbyrecombiningpre-existingcapabilities.ThepotentialsofallcitiestocontributetotheTwinTransitiontechnologiesaremappedbycalculatingso-calledRelatednessDensityscores.4TheRelatednessDensityofacity(e.g.Seoul)aroundaTwinTransitiontechnology(e.g.solaren-ergy)sumstherelatednessscoresforthatTwinTransitiontechnologytoallothertechnologiesinwhichthecityisspecialized(asproxiedbytheirRelativeTechnologicalAdvantage).RelatednessDensityishigherwhenacityhasstrongcapabilitiesinalltechnologiestowhichtheTwinTransitiontechnologyisrelated.Thus,thehighertheRelatednessDensityscore,thehigherthepotentialofthecitytodeveloptheTwinTransitiontechnology.Thisisbecausethelocalpresenceofrelatedtechnologiesprovidescapabilitiesthatcansupportthedevelopmentofthegreenordigitaltech-nologyconcerned.Foreachdigitalandgreentechnology,aRelatednessDensitymapofcitiesinEastandSouthEastAsiaispresented.ThesemapsrepresentthetechnologicalRelatednessDensityaroundaTwinTransitiontechnologyineachcity,indicatingthematchingofthetechnologytoothertech-nologiesinwhichthecityisspecialized.ThehighertheRelatednessDensityaroundaTwinTran-sitiontechnologyinacity,themorerelevantcapabilities(i.e.technologiesrelatedtothatTwinTransitiontechnology)arelocallyavailablethatcouldbeusedtoadvancenewknowledgecreationintheTwinTransitiontechnology.Thereare27mapsintotal,foreachofthe27TwinTransitiontechnologies.Asanillustration,6mapsrepresenting3greentechnologies(batteries,solaren-ergy,hydrogen)and3digitaltechnologies(InternetofThings,AI,AutonomousVehicles)aredis-cussed.Fortheremainingtechnologies,linkstothemaps5canbefoundinAppendix5.Citieswithzeropatentsarenotshown.4Formethodologicaldetails,seeHidalgoetal.(2018):https://link.springer.com/chapter/10.1007/978-3https://link.springer.com/chapter/10.1007/978-3-319-96661-8_4631996661-8_465Beloweachmap,alinktoaninteractiveHTMLfilehasbeenadded.Clickingoneachcityprovidesdetailsintermsoftherankingsofeachcityconcerningthenumberofpatents,theRelatednessDensity,andtheRelativeTechnologicalAdvantage(RTA)ofthecityinthattechnology.WealsoincludeaLocationIndexthatsumsforeachcityitsrankingsinthesethreedimensions(patentquantityinagiventechnology,theirrelativespecialization(RTA),andtheirRelatednessDensity).06PotentialsofcitiesinEastandSouthEastAsiainTwinTransitiontechnologiesTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents356.1RelatednessDensitymapforgreentechnologiesFigure14presentstheRelatednessDensityscoresofthe128citiesinEastandSouthEastAsiaforbatteries.Theinteractivemapindicatesthattheprincipleofrelatednessseemstohold;thehigherthepotentialofacityinbatteries,themorespecializedthecityisinbatteries.ThisresultisconfirmedinallRelatednessDensitymaps.Japanesecitiestendtoshowhighpotentialtodevelopnewbatterytechnologies.Nagoyaisnumberone,followedbyTokyo.NumberthreeistheChinesecityofChangsha,followedbytheJapanesecitiesofKoriyamaandKyoto-Osaka-Kobe.Therestofthetop-10potentialinbatteriesconsistsofGwangju(RepublicofKorea),Shijiazhuang(China),Maebashi-Takasaki(Japan),Daejon(RepublicofKorea)andUlsan(RepublicofKorea).Figure14.MapofrelatednessdensityaroundbatteriesNote:ThecolorsofthedotsrepresenttheRelatednessDensity(RD)scoresofcities;citieswiththehighestpotentialinbatteriesarecoloredorangetored,whilecitieswithlowpotentialarecoloredbluetopurple.Thelargerthesizeofthedot,thehighertheRDisinbatteries.https://www.paballand.com/asg/wb-asia/maps/batteries.html36TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsThetop-10EastandEastAsiancitiesbyRelatednessDensityscoreforsolarenergyaremostlyinChinaorRepublicofKorea(Figure15).NumberoneistheChinesecityofNanjing,followedbyKyo-to-Osaka-Kobe(Japan)andXian(China).Then,Cheongju(RepublicofKorea,no.4),Shijiazhuang(China,no.5),Jeonju(RepublicofKorea,no.6)andHeifei(China,no.7),Cheonan(RepublicofKorea,no.8),Gwangju(RepublicofKoreano.9)andHongKongSAR(China,no.10).Figure15.Mapofrelatednessdensityaroundsolarenergyhttps://www.paballand.com/asg/wb-asia/maps/solar-energy.htmlCitiesintheRepublicofKoreashowthehighestpotentialstodevelophydrogen,accordingtotheirRelatednessDensityscores(Figure16).Thetop-3consistsoftheRepublicofKoreancitiesofUlsan,JeonjuandCheongju,followedbytheChinesecitiesofChangshaandShenyang,theJapa-nesecityofKyoto-Osaka-Kobe,theRepublicofKoreancitiesofBusanandCheonan,andthetwoJapanesecitiesofKoriyamaandOkayama.TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents37Figure16.Mapofrelatednessdensityaroundhydrogenhttps://www.paballand.com/asg/wb-asia/maps/hydrogen.html38TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents6.2RelatednessDensitymapfordigitaltechnologiesThepotentialtodevelopdigitaltechnologies,accordingtotheirRelatednessDensityscore,ismorespatiallyconcentratedinEastandSouthEastAsiathaninthecaseofgreentechnol-ogies.Chinaisalsomoredominant,whileJapanisalmostnowhere,incontrasttoJapan’sstrongpotentialingreentechnologies.Forexample,ChinesecitiestakeupsevenofthetoptenplacesfortheInternetofThings(Figure17)andartificialintelligence(Figure18),althoughSeoulalsorankshigh(2ndforInternetofthings,3rdforartificialintelligence).Theseoutcomesneedtobeinterpretedcautiously,assomecitieswithhighrankingsforAIdonotactuallypatentalotinAI.Bycontrast,JapanesecitiesdemonstratehighRelatednessDensityscoresforautonomousvehicles(Figure19).Tokyoisnumberone,andthreeotherJapanesecitiesareinthetop-10.Chinesecitieshavefivecitiesinthetop-ten,andSeoulisrankedninth.Figure17.Mapofrelatednessdensityaroundinternetofthingshttps://www.paballand.com/asg/wb-asia/maps/internet-of-things.htmlTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents39Figure18.MapofrelatednessdensityaroundArtificialIntelligencehttps://www.paballand.com/asg/wb-asia/maps/artificial-intelligence.htmlFigure19.Mapofrelatednessdensityaroundautonomousvehicleshttps://www.paballand.com/asg/wb-asia/maps/autonomous-vehicles.html40TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents07GrowthofTwinTransitiontechnologiesTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents41Anempiricalanalysisisconductedtoassesstheeffectofrelatedtechnologies,asmeasuredbyRelatednessDensity,ontheabsolutegrowthofTwinTransitiontechnologiesincities.AnOLSmodelwithcityfixedeffectsisestimatedtoassesstheabsolutegrowthofatechnologyinacityintheperiod2004-2021.Theabsolutegrowthiscalculatedbytimewindowsof5years,for4subsequentperiods(2002-2006,2007-2011,2012-2016and2017-2021)andrepresentthedifferenceinnumberpatentsbetweenoneperiodandthennext.Allindependentvariablesaremeasuredintheperiodbeforethetimewindowof5years.So,forthefirstperiod2002-2006,theindependentvariablesarefortheperiod1997-2001.ThemainvariableofinterestisRelatednessDensity.6Theliteratureontheprincipleofrelatednessoftenusesentrymodelswherethedepen-dentvariableistheentry(1)ornot(0)iftheRTAofacityinagiventechnologygoesfromavaluebelow1toavalueabove1.Inthisreportwepresentagrowthmodelinthemaintextbecauseofthesharpheterogeneitybetweencities.Inordernottoexcludecitiesthatarebyfarthemostactiveintwintechnologies,wefocusourdependentvariableonabsolutegrowthinsteadofentry.Theentrymodelwithsimilarspecificationsispresentedintheappendix.Table3presentstheTwinTransi-tionmodelthatlooksatthegrowthofanyTwinTransitiontechnologyincities.Twoeconometricmodels(resultsshowninTables4and5)testtheimpactofhavinggreencapabilitiesfordigitaltechnologicalgrowthandviceversa,tolinkbothtransitions.TheRelatednessDensity(RD)aroundtheTwinTransitiontechnologiesispositivelyassociatedwithgrowthintoeithergreenordigitaltechnologies(model1).Estimatesshowthatanadditional10pointsofrelatednessdensity(0-100scale)increaseonaveragethenumberofpatentintwintechsbymorethan7patents.Thisisaverysubstantialamountgiventhattheaveragegrowthbetween2periodsislessthan9patents.Thisstrongimpactofrelatednessdensityisconfirmedintheentrymodelpresentedintheappendix.Wefindthatanincreaseof15pointsnearlydoublestheproba-blyofentryintwintechnologies.7Thisconfirmspreviousfindingsintheprincipleofrelatednessliteraturethatrelatednessdensityisastrongpredictorofgrowthanddiversificationandthereforeshouldbetakenintoaccountforresearchandinnovationinvestmentprograms.6Inthisanalysis,wedon’tfocusonthetechnologylifecycles(Bloometal.,2021)ortheirlevelofcomplexity(Ballandetal.,2020).Analyzingthedifferentiatedimpactofrelatednesswhenitcomestotechnologylifecyclesandcomplexityrepresentsapromisingareaforfutureresearch.7Inthefirstmodelpresentedintheappendix,thecoefficientofrelatednessdensityis0.007andthemeanofentryis0.105.Foreveryadditional15pointsofrelatednessdensity,entryincreasesby0.00715=0.105(itdoubles).07GrowthofTwinTransitiontechnologies42TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsAccordingtomodel2,RelatednessDensityaroundgreentechnologies(GreenRD)tendtobeas-sociatedwithlowergrowthinTwinTransitionpatentingactivity.10additionalpointsinrelated-nessdensitydecreaseoveralltwinpatentsinthenextperiodbyalmost3patents.Inthediversifi-cationmodelpresentedintheappendix,wealsofindanegativeimpactofgreenrelatedness,buttheeffectisnotstatisticallysignificant.Model3showsapositiveeffectofRelatednessDensityindigitaltechnologies(DigitalRD)andanassociatedincreaseofmorethan6patentsfor10relat-ednessdensitypoints.Model4bringsthetwoRDstogetherandconfirmsthepreviousfindings.Intheentrymodelsspecification,wealsofindapositivecoefficientfordigitalrelatednessbutthecoefficientisnotstatisticallysignificant.Overall,theseresultsindicatethatdigitalcapabilitiesplayamoreimportantroleintheoveralldevelopmentofTwinTransitioncapabilitiesthangreencapabilities.Table3.TheeffectofRelatednessDensityongrowthinTwinTransitiontechnologies(1)(2)(3)(4)RD0.777(0.057)GreenRD-0.295(0.111)-0.442(0.115)DigitalRD0.493(0.135)0.643(0.140)Period-0.345(0.671)3.287(0.776)1.149(0.703)2.547(0.792)Constant102.924(9.264)127.750(9.390)103.700(10.540)105.645(10.549)Observations19,04219,04219,04219,042CitiesFEYESYESYESYESR20.1550.1470.1470.148AdjustedR20.1430.1350.1360.136Note:p<0.05;p<0.01;p<0.001Wenowturntothedevelopmentofgreentechnologiesspecifically.Theresultsarepresentedintable4.Acity’sgreenanddigitalRelatednessDensityscoresarebothpositivelyassociatedwithitsgrowthintogreentechnologies(Models1and2ofTable4).Themagnitudeandstatisticalsig-nificanceofRDeffectsweakenwhenbothareconsideredtogether(Model3ofTable4).Thediver-sificationmodelpresentedintheappendixisconsistentwiththeseresults,showingthatdigitalrelatedness–ontopofgreenrelatedness-mattersforgreendiversification.Theassociationwithgrowthvariesbythekindofdigitaltechnology(Model4).AI,InternetofThingsandQuantumCom-putertechnologiesareespeciallyrelevanttopredictgreengrowthincities,whilethecoefficientsofSmartGridsandAutonomousVehiclesarenegativeandsignificant.Theseresultsarenotalwaysconsistentwiththeentrymodelspresentedintheappendixandtheywouldalsorequirefurtheranalysestofullyinterprettheirmeaning.Overall,ourfindingsindicatethatrelatednessarounddigitaltechnologiesplayanimportantroleinthegreentransition.TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents43Table4.TheeffectofRelatednessDensityongrowthintogreentechnologies(1)(2)(3)(4)GreenRD0.231(0.124)0.177(0.129)1.340(0.193)DigitalRD0.298(0.151)0.238(0.157)Additivemanufacturing0.010(0.128)Artificialintelligence0.568(0.240)Augmentedreality-0.160(0.203)Autonomousrobots-0.157(0.110)Autonomousvehicles-0.439(0.219)Blockchain-0.365(0.273)Cloudcomputing-0.576(0.424)Cybersecurity0.181(0.413)Internetofthings1.447(0.312)Quantumcomputers0.385(0.158)Smartgrids-1.404(0.145)Period-2.785(0.866)-2.498(0.785)-3.058(0.884)-3.837(0.913)Constant41.957(10.637)34.388(11.932)33.722(11.942)-6.242(12.715)Observations11,26611,26611,26611,266CitiesFEYESYESYESYESR20.0710.0710.0710.086AdjustedR20.0490.0490.0490.063Note:p<0.05;p<0.01;p<0.001Wenowturntothedevelopmentofdigitaltechnologiesspecifically.Theresultsarepresentedbelowintable5.DigitalRelatednessDensityispositivelyassociatedwithdigitalgrowthinAsian44TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentscities,whileGreenRelatednessDensityisnegativelyassociated,whichisconsistentwiththeout-comeofTable3(Models1,2and3ofTable5).Thediversificationmodelpresentedintheappendixconsistentlyshowsaweakornotsignificanteffectofgreenrelatednessdensity.Theassociationwithgrowthvariesbythekindofgreentechnology(Model4).RelatednessDensityaroundsomegreentechnologies,includingbatteries,marinehydro,nuclear(strong),solarandwasteman-agement,haveapositiverelationshipwithdigitalgrowth(Model4ofTable5).Theseresultsarenotalwaysconsistentwiththeentrymodelspresentedintheappendix.Theywouldalsorequirefurtheranalysestofullyinterprettheirmeaning.Overall,ourfindingsindicatethatrelated-nessaroundgreentechnologiesdoesnotplayanimportantroleinthedevelopmentofdigitaltechnologies.Table5.TheeffectofRelatednessDensityongrowthintodigitaltechnologies(1)(2)(3)(4)DigitalRD0.777(0.230)1.243(0.239)0.922(0.268)GreenRD-1.091(0.191)-1.379(0.198)Air&Waterpollutionreduction0.530(0.419)Batteries0.968(0.534)Biofuels-2.237(0.429)Efficientpower&combustion-0.040(0.316)Geothermalenergy0.053(0.190)Greenbuildings-0.060(0.241)Greentransports-0.442(0.373)Greenhousegascapture0.133(0.180)Hydrogen-1.334(0.377)Marine&hydroenergy0.424(0.168)Nuclearenergy0.427(0.165)Otherenergystorage-0.427(0.319)TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents45(1)(2)(3)(4)Solarenergy0.717(0.328)Wastemanagement0.781(0.378)Waterrelatedadaptationtechnologies0.060(0.291)Windenergy-0.424(0.189)Period6.550(1.212)12.346(1.336)10.911(1.362)8.951(1.442)Constant194.412(17.799)244.094(15.813)201.664(17.774)205.763(19.059)Observations7,7767,7767,7767,776R20.3140.3160.3190.326AdjustedR20.2900.2920.2950.301Note:p<0.05;p<0.01;p<0.00146TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsIdentifyingcomplementaritieswithotherregions08TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents47Acitythatlacksrelevanttechnologicalcapabilitiesmayconnecttoothercitiestoaccesscomplementarycapabilities.BallandandBoschma(2021b)showforEuropeanregionsthatso-calledcomplementarycapabilitiesinotherregionsmayactuallyenhancethepotentialofcitiestodiversifyandgrowintonewtechnologies.Inotherwords,notonlyregionalcapabilitiesbutalsocapabilitiesavailableinotherregionsmayaffectthedevelopmentofnewtechnologiesinregions.Thisisespeciallytrueforinter-regionallinkagesthatgiveaccesstonewcapabilitiesrelatedtoexistingcapabilitiesintheregion.Acomplementarityindicator(AddedRelatednessDensity)isusedtoidentifycitiesthatcanprovidecomplementarycapabilitiestoacitytodevelopgreenordigitaltechnology.BallandandBoschma(2021b)developacomplementaritymeasuretoidentifyrelevantcapabilitiesinoth-erregionsthatarelackinginaregionbutarecomplementarytothetechnologytheregionaimstodevelop.Basically,itmeasurestheRelatednessDensitythateachregioncouldaddtotheRe-latednessDensityoftheregionforaparticulartechnology.Thecitiesthatcanprovidethehighestamountofcomplementarycapabilitiesdifferbycity,becausecitiesaccumulatedifferentsetsofcapabilitiesovertime,andthereforetheirneedtotapintorelevantcomplementaritycapabilitiesinothercitiesisalsodifferent.Foreachtechnologyandcity,weidentifythetop-5citiesthatcanprovidethehighestamountofcomplementarycapabilitiesthatthecityitselfismissingandthatarerelevantforthecitytodiversifyandgrowintotheTwinTransitiontechnology.Asthereare128citiesand27technol-ogiesinourdataset,thereare128x27possiblecomplementaritytables.ThetablesbelowpresentRDscoresforbatteries,artificialintelligenceandsolarenergyfor4Asiancities.Foreachofthese3technologies,weshowthetop5-regionsthatcanprovidecomplementarycapabilitiestoeachofthe4Asiancities.Appendix4includesalinktoanExcelfileinwhichinformationisgivenforeverycityonhowmuchRelatednessDensitycouldbeaddedtothatcityforeverydigitalandgreentechnologybyallother127cities.Table7showsthetopfiveAsiancitiesthathavethehighestAddedRDforfourAsiancities(Shang-hai,Kyoto-Osaka-Kobe,Incheon,andBangkok)inthefieldofbatteries.Threeoutofthetop5-AsiancitiesthatcanofferthemostaspotentialcollaborationpartnersinbatteriestoShanghai,IncheonandBangkokarelocatedinJapan,notablyNagoyaandTokyo.TheChinesecityofChangshaturnsouttobeapotentiallyattractivepartnerforall4cities.FortheJapanesecityofKyoto-Osaka-Ko-be,fourcitiesinthetop5potentialpartnerstodevelopnewbatterytechnologyarelocatedin08Identifyingcomplementaritieswithotherregions48TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsChina(i.e.Changsha,Shijiazhuang,HongKongSAR,andChangchun).Similarly,4citiesinthetop-5thataremostcomplementarytoShenzheninAIarelocatedoutsideChina(Table8).HongKongSAR,Seoul,andShenzhenalsopopupfrequentlyinthetop-5ofpotentialpartnersinAIinthe4cities.Finally,theoverwhelmingmajorityofcitiesinthetop5Asiancitiesthathavethemosttoofferintermsofcomplementarycapabilities(AddedRD)totheAsiancitiesofTokyo,Kyoto-Osa-ka-KobeandSeoulinsolarenergyarelocatedoutsideofthecountryofthecityconcerned,al-thoughWuhan,theothercityweconsiderhere,hasthreeotherChinesecitiesinitstop5(Table9).Table7.Top-5AsiancitieswithcomplementaritiesinBatteriesforShanghai,Kyoto-Osaka-Kobe,IncheonandBangkokShanghai(RD:21,02)AddedRDKyoto-Osaka-Kobe(RD:66,12)AddedRDKyoto-Osaka-Kobe(JPG27)59,93Changsha(CN17)22,65Nagoya(JPF23)57,99Shijiazhuang(CN153)21,62Gwangju(KRO41)54,64HongKongSAR(HK000)21,43Koriyama(JPB07)52,06Hiroshima(JPH34)20,68Changsa(CN17)51,63Changchun(CN238)19,82Incheon(RD:47,59)AddedRDBangkok(RD:25,13)AddedRDNagoya(JPF23)38,85Nagoya(JPF23)58,35Tokyo(JPD13)38,01Tokyo(JPD13)56,49Changsha(CN17)37,8Koriyama(JPB07)55,64Shijiazhuang(CN153)37,33Changsha(CN17)53,23Maebashi-Takasaki(JPC10)35,19HongKongSAR(HK000)49,22Table8.Top-5AsiancitieswithcomplementaritycapabilitiesinArtificialIntelligenceforShenzhen,Jakarta,Tokyo,andKualaLumpurShenzhen(RD:65,7)AddedRDJakarta(RD:42,29)AddedRDUlsan(KRO22)17,39HongKongSAR(HK000)22,59Singapore(SGZZZ)15,96Shenzhen(CN191)21,22HongKongSAR(HK000)15,71Seoul(KRO11)21,2Sendai(JPB04)15,27Xian(CN169)20,59Daegu(KRO31)15,18Beijing(CN12)19,43TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents49Tokyo(RD:38,13)AddedRDKualaLumpur(RD:52,6)AddedRDHongKongSAR(HK000)47,49Tokyo(JPD13)25,01Beijing(CN12)40,83HongKongSAR(HK000)23,56Seoul(KRO11)40,33Singapore(SGZZZ)20,28Shenzhen(CN191)40,15Seoul(KRO11)19,26KualaLumpur(MY13)39,48Shenzhen(CN191)19,12Table9.Top-5AsiancitieswithcomplementaritycapabilitiesinSolarEnergyforWuhan,Tokyo,SeoulandKyoto-Osaka-KobeWuhan(RD:38,55)AddedRDTokyo(RD:50,79)AddedRDNanjing(CN335)37,55Nanjing(CN335)36,1Kyoto-Osaka-Kobe(JPG27)35,61Jeju(KR071)33,32HongKongSAR(HK000)35,39Xian(CN169)33,06Gwangju(KRO41)35,15Nanning(CN128)32,73Xian(CN169)34,3Gwangju(KR041)32,28Seoul(RD:42,59)AddedRDKyoto-Osaka-Kobe(RD:64,84)AddedRDNanjing(CN335)34,47Changchun(CN238)18,98Xian(CN169)32,28HongKongSAR(HK000)18,8Shenyang(CN362)31,63Harbin(CN280)18,1Ulsan(KRO22)31,27Nanning(CN128)17,85Kyoto-Osaka-Kobe(JPG27)30,95Xian(CN169)17,5250TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents09ConclusionTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents51Thispaperexplorestheactualandpotentialparticipationof128EastAsianandSouthEastAsiancitiesintheTwinTransitionthroughtheirdigitalandgreenpatentactivities.16greenand11digitaltechnologiesareidentified,andtextminingisappliedtoassigntheseTwinTransitiontechnologiestoCPCtechnologyclassesusingpatentdata,basedonclassificationsfromtheOECDandWIPO.SincetheTwinTransitionisaboutleveragingpotentialsynergiesbetweenthedigitalandgreentechnologies,theprincipleofrelatednessisappliedtoidentifytheextenttowhichthegreenanddigitaltransitionsbuildonsimilarcapabilities.ATwinTransitionspace,representingthetechnologicallinksbetweenthetwintechnologies,revealsthatthetwotechnologiesbelongtoalmostseparateclusters.SmartGridsemergedasakeybridgingtechnology,whichbuildsontechnologiesthatbelongtoboththedigitalandgreenspaces.ThepapercomparestheevolutionofgreenanddigitaltechnologiesinsomemajorAsianeconomiesversustheEuropeanUnionandtheUSfortheperiod2004-2021.TheEUtakesupthelargestshareofgreenanddigitaltechnologies,butitsrelativeshareisdeclining.ThisisincontrastwithChinawhichincreaseditsglobalshareingreenanddigitaltechnologies,especiallyinmorerecentyears.SomeAsianeconomiesplayanadvancedroleingreenpatenting.Japanisrankedsecondintheworld,Chinaisrankedfourth,whileRepublicofKoreaisnotfarbehind.Ofallcatching-upeconomiesinEastandSouthEastAsia,Malaysiashowsthebestperformanceingreentechnologiesbutpatentingactivityisstillrelativelylowanddominatedbyafewlargecor-porations.Asiaalsoplaysanadvancedroleindigitalpatenting:ChinarankssecondaftertheUS,whileJapanisrankedfourth,followedbyRepublicofKorea.Batterytechnologytookupmorethanone-thirdofallgreenpatentsintheperiod2017-2021in17economiesinEastandSouthEastAsia.Thereisastrongpositiverelationshipbetweentherankingsofcitiesbasedontheabsolutenumberofpatentsindigitalandgreentechnologies.Mostregionsbelongeithertothegroupoftwinleaders(notablyTokyo,ShenzhenandSeoul),ortothegroupoffollowers(manycitiesinMalaysiaandVietnam).Notmanycitiesareeithergreenordigitalleadersonly.Infact,highrankingsindigitalwereoftenmatchedwithhighrankingsingreen;eightcitiesoutofthedigitaltop-10(Shenzhen,Tokyo,Seoul,Beijing,Guangzhou,Shanghai,Kyoto-Osaka-KobeandNanjing)alsobelongtothetop-10ingreentechnologies.Eightcitiesofthetop-10ingreen(Tokyo,Seoul,Kyoto-Osaka-Kobe,Shenzhen,Nanjing,Guangzhou,BeijingandShanghai)alsobelongtothetop-10indigitaltechnologies.09Conclusion52TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsThroughapplyingtheprincipleofrelatedness,thepaperassessesthefuturepotentialofAsiancitiestodevelopnewTwinTransitiontechnologies.Patentdataisusedtoidentifythepotentialofcitiestodevelopdigitalandgreentechnologiesinthenearfuture.Foreachdigitalandgreentechnology,amapofcitiesinAsiaisconstructedshowingtheRelatednessDensityscoresaroundagiventechnologyineachcity.ThehighertheRelatednessDensity,thehigherthepoten-tialofthecitytodevelopthegiventechnology,becausethelocalsupplyofrelatedtechnologiesprovidescapabilitiesthatcansupportthedevelopmentofthegreenorthedigitaltechnologyconcerned.Digitalcapabilitiesplayanimportantroleingreengrowthbuttheoppositedoesnotapply.ThisfindingisbasedonaneconometricassessmentoftheeffectofgreenanddigitalRelatednessDensityontheabsolutegrowthinnumbersofTwinTransitionpatents.Thisanalysissuggeststhatthegreentechnologieswefocusonreflectdifferentcapabilitiesfromtheonesneededforthedig-italtransition.RelevantgreencapabilitiesdonotpromotedigitalgrowthinAsiancitiesingeneral.Weshouldalsonotethattheresultsmightbeaffectedbyourselectionofgreenanddigitaltech-nologies.Moreresearchisneededtoconfirmboththedisconnectionbetweenthetwotransitionsandtheirpotentialasymmetry(i.e.digitalimpactinggreenbutnottheotherwayaround).ThepaperidentifiespotentialpartnercitiesthatcanhelpdevelopTwinTransitiontechnolo-gies,asitisunlikelythatacityisabletomasterallcapabilitiesneededforaTwinTransition.TheprincipleofrelatednessframeworkisusedtoshowwhichcitiesinEastandSouthEastAsiacouldgiveaccesstocomplementaryknowledgethatislocallymissingbutcanenhancetheca-pacityofthecitytoparticipateinthegreenanddigitaltransitions.ThisreportprovidesestimatesofhowmuchRelatednessDensitycouldbeaddedtoacityinaspecifictechnologybyallother127citiesinEastandSouthEastAsia.Thetop-5ofmostrelevantpartnerslookdifferentacrosscities.Sincetheyhavedifferentsetsofcapabilitiesattheirdisposal,theirneedtotapintorelevantcom-plementaritycapabilitiesinothercitiesisdifferent.ThisresearchhighlightsthatcitiescantargetTwinTransitiontechnologiesinwhichtheyhavehighpotential.Localcapabilitiesconditionwhichparticulartransitionscanbesupportedeffec-tivelybypolicy.ThisimpliesthatcitiesshouldrefrainfromdevelopingTwinTransitiontechnol-ogiesinwhichtheyhavenorelevantcapabilitieswhatsoever(Ballandetal.2019).Citieshavedifferentcapabilities,andtherefore‘one-size-fits-all’policiesshouldbeavoided.Forthecatching-upeconomiesthatarelaggingbehindintheTwinTransition,policiescanhelpcitiesleveragecollaborationswithcomplementarypartnerstodeveloprelevantcapa-bilities.Thecomplementarityindicator(AddedRelatednessDensity)couldbeusedtoidentifycitiesthatcouldprovidecomplementarycapabilitiestodevelopgreenordigitaltechnology.Intermsofprioritizationoftargeting,theempiricalanalysisshowsthatdigitaltechnologyhasahigh-erpotentialspillovereffectintobothdigitalandgreentechnologies.Therefore,connectingwithcitiesthathavehighrelatednessindigitalspacecanbemoredesirableintheshortrun.Publicpolicycanaimtoidentifyandfacilitateuniversity-industrylinkages,establishnewcollaborationswithothercities,institutions,anduniversities,andpromotethemobilityofentrepreneursandworkerstohelpfirmsandcitiesaccumulateabsorptivecapacityandskillsetsrequiredfortheTwinTransitiontechnology.Tosomeextent,attractingexternalfirmssuchasMNEs(Neffkeetal.2018)andskilledmigrants(Caviggiolietal.2020)tothecitycanalsohelp.TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents53Thisreporthasafewcaveatsthatcouldbeaddressedinfutureresearch.First,giventhatmultinationalfirmsoperatingintheEastAsiancitiesarebehindthemajorityofpatentingactivi-ties,thepotentialknowledgespilloversfromthesefirmsremainachallengeformanyeconomies.Collaborationopportunitieswithlocalfirmsandotherregionsthatmightoffercomplementarycapabilitiesarepromisingbutmaybeconstrainedbythefactthatpatentingactivitiesareconcen-tratedinthehandsofafewdominantplayers.Second,therearesomepotentialdrawbacksusingpatentdata.TheymaynotcaptureallformsofinnovationintheTwinTransition.Wealsousedpat-entcounts,insteadofmeasuringthequalityofpatentsinvolved.Andbyfocusingonpatentdata,weexaminedtechnologycreationratherthantechnologyadoption.Third,developingcapabilitiesfortheTwinTransitiongoesbeyondpatentingandrequiresaconfluenceofeconomic,socialandpoliticalfactors.TounlockthefullpotentialofTwinTransitiontechnologies,policyshouldpriori-tizetheirwidespreadadoption,commercializationanddiffusion.This,inturn,dependsonfactorssuchassocialacceptance,behavioralchange,infrastructurereadiness,accesstofinance,humancapital,andconduciveregulationsandpolicies(Muenchetal.2022).Futureresearchcantakesuchcomplementaryfactorsintoconsideration.Fourth,weusedcitiesasunitofanalysisformea-suringinnovationactivityintheTwinTransition,asagglomerationforcesareknowntoenhanceinnovations.However,citiesdonotactandinnovatebutactorsincitiesdo.Wecapturedthattosomeextentbyidentifyingthekeypatentapplicantsincitiesbutdidnotexploreitindetail.Ourfindingsindicatethatintheleadingcities,manyapplicantscontributetoTwinTransitiontechnol-ogies,butinsmallercities,patentactivityisoftendominatedbyafewplayers,oftenmultinationalcorporations.ThismayhaveconsequencesforthefurtherdevelopmentoftheTwinTransitionincities,whichshouldbetakenupinfutureresearch.Finally,itwouldbeinterestingtoexploretheimpactofthematurityoftechnologiestocontributetotheTwinTransition.Itisunclearwhattoexpectfromatheoreticalpointofviewwhetherspecializationsinyoungorold(TwinTransition)technologieswouldpromotetheTwinTransitionincities.54TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsReferencesTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents55ReferencesAmoroso,S.,Aristodemou,L.,Criscuolo,C.,Dechezleprete,A.,Dernis,H.,Grassano,N.,Moussiegt,L.,Napolitano,L.,Nawa,D.,Squicciarini,M.andTuebke,A.(2021),WorldCorporateTopRandDinvestors:Pavingthewayforclimateneutrality,EUR30884,PublicationsOfficeoftheEuropeanUnion,Luxembourg,JRC126788.Autor,DH.(2015)WhyAreThereStillSoManyJobs?TheHistoryandFutureofWorkplaceAutomation.JournalofEconomicPerspectives29(3),3–30.Balland,P.A.,Jara-Figueroa,C.,Petralia,S.,Steijn,M.,Rigby,D.,andHidalgo,C.(2020)ComplexEconomicActivitiesConcentrateinLargeCities,NatureHumanBehavior,4:248–254.Balland,P.A.,andBoschma,R.(2021a)MappingthepotentialsofregionsinEuropetocontributetonewknowledgeproductioninIndustry4.0technologies,RegionalStudies,55(10-11),1652-1666.Balland,P.andR.Boschma(2021b)Complementaryinter-regionallinkagesandSmartSpecialisation.AnempiricalstudyonEuropeanregions,RegionalStudies55(6),10591070.Balland,P.A.,R.Boschma,J.CrespoandD.Rigby(2019)SmartspecializationpolicyintheEU:Relatedness,knowledgecomplexityandregionaldiversification,RegionalStudies53(9),1252-1268.Balland,P.A.,Broekel,T.,Diodato,D.,Giuliani,E.,Hausmann,R.,O’Clery,N.andRigby,D.(2022)Thenewparadigmofeconomiccomplexity,ResearchPolicy51(3),1-11.Balogun,A-L.,Marks,D.,Sharma,R.,Shekhar,H.,Balmes,C.,Maheng,D.,Arshad,A.,Salehi,P.(2020)AssessingthePotentialsofDigitalizationasaToolforClimateChangeAdaptationandSustainableDevelopmentinUrbanCentres,SustainableCitiesandSociety53.Bianchini,S.,Damioli,G.,&Ghisetti,C.(2023).Theenvironmentaleffectsofthe“twin”greenanddigitaltransitioninEuropeanregions.EnvironmentalandResourceEconomics,84(4),877-918.Bloom,N.,Hassan,T.A.,Kalyani,A.,Lerner,J.,&Tahoun,A.(2021).Thediffusionofdisruptivetechnologies(No.w28999).NationalBureauofEconomicResearch.Boschma,R.(2017)Relatednessasdriverbehindregionaldiversification:Aresearchagenda.RegionalStudies51(3),351–364.Boschma,R.,P.A.BallandandD.F.Kogler(2015)Relatednessandtechnologicalchangeincities:TheriseandfalloftechnologicalknowledgeinU.S.metropolitanareasfrom1981to2010,IndustrialandCorporateChange24(1),223-250.Buarque,B.S.,R.B.Davies,R.M.HynesandD.F.Kogler(2020)OKComputer:thecreationandintegrationofAIinEurope,CambridgeJournalofRegions,EconomyandSociety13(1),175–192.Caviggioli,F.,P.JensenandG.Scellato(2020)HighlyskilledmigrantsandtechnologicaldiversificationintheUSandEurope.TechnologicalForecastingandSocialChange154,119951.56TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsCiceroneG.,A.Faggian,S.Montresor,F.Rentocchini(2022)Regionalartificialintelligenceandthegeographyofenvironmentaltechnologies:doeslocalAIknowledgehelpregionalgreen-techspecialization?RegionalStudies,onlinefirst.Ciffolilli,A.andMuscio,A.(2018)Industry4.0:Nationalandregionalcomparativeadvantagesinkeyenablingtechnologies,EuropeanPlanningStudies26(12),2323–2343.Coenen,L.andTruffer,B.(2012)Placesandspacesofsustainabilitytransitions:Geographicalcontributionstoanemergingresearchandpolicyfield,EuropeanPlanningStudies20(3),367-374.DelRioCastroG.,FernandezM.C.G.andColsaA.U.(2021)UnleashingtheconvergenceamiddigitalizationandsustainabilitytowardspursuingtheSustainableDevelopmentGoals(SDGs):aholisticreview.JournalofCleanerProduction,122204.Diemer,A.,S.Iammarino,R.PerkinsandA.Gros(2022)Technology,resourcesandgeographyinaparadigmshift:thecaseofcriticalandconflictmaterialsinICTs.RegionalStudies.ISSN0034-3404EuropeanCommission(2022a),Industry5.0,atransformativevisionforEurope:governingsystemictransformationstowardsasustainableindustry,Directorate-GeneralforResearchandInnovation,Luxembourg:PublicationsOfficeoftheEuropeanUnion.EuropeanCommission(2022b)StrategicForesightReport.Twinningthegreenanddigitaltransitionsinthenewgeopoliticalcontext,CommunicationfromtheCommissiontotheEuropeanParliamentandtheCouncil,29June,Brussels.EuropeanCommission(2020)CriticalrawmaterialsforstrategictechnologiesandsectorsintheEU.Aforesightstudy,Luxembourg:PublicationsOfficeoftheEuropeanUnion.Frey,C.B.andOsborne,M.(2016).TheFutureofEmployment:HowSusceptibleareJobstoComputerisation?TechnologicalForecastingandSocialChange,114,254–280.Fushimi,K.,K.Bergquist,L.RiveraLeón,N.XuandS.Wunsch-Vincent(2018)Measuringinnovationinenergytechnologies:greenpatentsascapturedbyWIPO’sIPCgreeninventory,EconomicResearchWorkingPaperNo.44,Vienna,WIPO.Haščič,I.andM.Migotto(2015)Measuringenvironmentalinnovationusingpatentdata,OECDEnvironmentworkingpaper,no.89,Paris:OECD.Hidalgo,C.,Balland,P.A.,Boschma,R.,Delgado,M.,Feldman,M.,Frenken,K.,Glaeser,E.,He,C.,Kogler,D.,Morrison,A.,Neffke,F.,Rigby,D.,Stern,S.,Zheng,S.,andZhu,S.(2018)ThePrincipleofRelatedness,SpringerProceedingsinComplexity,451-457.Hidalgo,C.A.,Klinger,B.,Barabasi,A.L.andHausmann,R.(2007)Theproductspaceanditsconsequencesforeconomicgrowth,Science317,482–487.JonesN.(2018)Howtostopdatacentresfromgobblinguptheworld’selectricity.Nature561,163–166.Lange,S.,J.PohlandT.Santarius(2020)Digitalizationandenergyconsumption.DoesICTreduceenergydemand?EcologicalEconomics176,October,106760.TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents57Liao,Y.,F.Deschamps,E.deFreitasRochaLouresandL.FelipePierinRamos(2017)Past,presentandfutureofIndustry4.0-asystematicliteraturereviewandresearchagendaproposal,InternationalJournalofProductionResearch55(12),3609-3629.Li,D.,Heimeriks,G.andAlkemade,F.(2021)Recombinantinventioninsolarphotovoltaictechnology:cangeographicalproximitybridgetechnologicaldistance?RegionalStudies55(4),605-616.Ménière,Y.,I.RudykandJ.Valdes(2017),PatentsandtheFourthIndustrialRevolution.Theinventionsbehinddigitaltransformation,EuropeanPatentOffice,Munich.Montresor,S.andQuatraro,F.(2019).GreentechnologiesandSmartSpecialisationStrategies:AEuropeanpatent-basedanalysisoftheintertwiningoftechnologicalrelatednessandkeyenablingtechnologies.RegionalStudies54(10),1354–1365.Muench,S.,Stoermer,E.,Jensen,K.,Asikainen,T.,Salvi,M.andScapolo,F.(2022),Towardsagreenanddigitalfuture,Luxembourg:PublicationsOfficeoftheEuropeanUnion.Neffke,F.,Hartog,M.,Boschma,R.andHenning,M.(2018)Agentsofstructuralchange:Theroleoffirmsandentrepreneursinregionaldiversification,EconomicGeography94(1),23–48.Neffke,F.,Henning,M.andBoschma,R.(2011)Howdoregionsdiversifyovertime?Industryrelatednessandthedevelopmentofnewgrowthpathsinregions.EconomicGeography87(3),237–265.Papadavid,P.(2021)Asia’sdoubleact:managingenergytransitionanddigitalinnovation,AsiaHouseResearch,AsiaHouse.Rigby,D.(2015)Technologicalrelatednessandknowledgespace.EntryandexitofUScitiesfrompatentclasses.RegionalStudies49(11),1922–1937.RolnickD.,DontiP.L.,KaackL.H.,KochanskiK.,LacosteA.,SankaranK.andBengioY.(2019)Tacklingclimatechangewithmachinelearning.arXivpreprintarXiv:1906.05433.SantoalhaA.andR.Boschma(2021)DiversifyingingreentechnologiesinEuropeanregions:doespoliticalsupportmatter?RegionalStudies55(2),182–195.Tanner,A.N.(2016)Theemergenceofnewtechnology-basedindustries:Thecaseoffuelcellsanditstechnologicalrelatednesstoregionalknowledgebases.JournalofEconomicGeography16(3),611–635.TrubyJ.(2020)GoverningartificialintelligencetobenefittheUNsustainabledevelopmentgoals.SustainableDevelopment28(4):946–959TWI2050(2019)Thedigitalrevolutionandsustainabledevelopment:opportunitiesandchallenges.ReportpreparedbytheWorldin2050initiative.InternationalInstituteforAppliedSystemsAnalysis(IIASA),Laxenburg,AustriaVandenBerge,M.,A.WeteringsandF.Alkemade(2020)Doexistingregionalspecialisationsstimulateorhinderdiversificationintocleantech?EnvironmentalInnovationandSocietalTransitions35(2020)185–201.58TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsVinuesaR.,AzizpourH.,LeiteI.,BalaamM.,DignumV.,DomischS.,NeriniF.F.(2020)Theroleofartificialintelligenceinachievingthesustainabledevelopmentgoals.NatureCommunications11(1),1–10.TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents59Appendices60TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsAppendix1.Namesofthe128citiesinEastandSouthEastAsiaCN12BeijingCN126NanchangCN128NanningCN153ShijiazhuangCN161TaiyuanCN164UrumqiCN167WuhanCN169XianCN17ChangshaCN191ShenzhenCN20ChengduCN23ChongqingCN238ChangchunCN277HangzhouCN280HarbinCN282HefeiCN335NanjingCN357ShanghaiCN362ShenyangCN383TianjinCN393WeifangCN400XiamenCN48GuangzhouCN50GuiyangCN64HohhotCN95KunmingCN98LanzhouHK000HongKongSARID102TasikmalayaID107YogyakartaID2BalikpapanID27DenpasarID33JakartaID4BandungID52MalangID55MedanID7BatamID70PadangID85PalembangID85SemarangID88PekalonganID91PekanBaruID92SukabumiID95SurabayaJPA01SapporoJPB04SendaiTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents61JPB05AkitaJPB07KoriyamaJPC09UtsunomiyaJPC10Maebashi-TakasakiJPC20NaganoJPD13TokyoJPE15NiigataJPE16ToyamaJPE17KanazawaJPF22Shizuoka-HamamatsuJPF23NagoyaJPG27Kyoto-Osaka-KobeJPH33OkayamaJPH34HiroshimaJPI37TakamatsuJPI38MatsuyamaJPI39KochiJPJ40Kitakyushu-FukuokaJPJ42NagasakiJPJ43KumamotoJPJ44OitaJPJ45MiyazakiJPJ46KagoshimaJPJ47NahaKH3PhnomPenhKP3HamhungKR011SeoulKR012IncheonKR021BusanKR022UlsanKR031DaeguKR032GumiKR041GwangjuKR042JeonjuKR051DaejonKR052CheongjuKR053CheonanKR071JejuLA4VientianeMM18YangonMM5MandalayMN1UlaanbaatarMO000MacaoSARMY1AlorStarMY12KotaKinabaluMY13KualaLumpurMY14KualaTerengganuMY15KuantanMY16KuchingMY24SerembanMY29SandakanMY8IpohMY9JohorBahruPH1AngelesCityPH12CebuCityPH15DavaoCityPH18GeneralSantosCityPH2BacolodPH21IloiloCityPH3BaguioCityPH32ManilaPH46Tarlac62TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsPH5BatangasCityPH52SanFernandoPH9CagayandeOroCitySGZZZSingaporeTH1BangkokTH13RayongTH16SuphanBuriTH17UbonRatchathaniTH18UdonThaniTH2ChiangMaiTH3ChonBuriTH6Khon-KaenTH7LampangTH9NakhonRatchasimaTW000TaipeiVN11HoChiMinhCityVN12HanoiVN18NhaTrangVN7CanThoVN9DaNangTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents63Tomeasuretechnologicalrelatednessbetweenpatentclasses,weusethedistributionofknowl-edgeclaimsbytechnologyoneachpatentataglobalscale,followingBoschmaetal.(2015)andRigby(2015).Thisisdonebycountingthenumberoftimestwotechnologies(twintechsorCPCs),sayiandj,co-occuronthesamepatentandthenstandardizingthiscountusingacosine(see‘relatedness’functiondocumentationinBalland,2017).Relatednessis,therefore,astandardizedmeasureofthefrequencywithwhichtwoIPCclassesappearonthesamepatent.Therelatednessbetweentechnologiescanbeformalizedasanetwork,theknowledgespace,fromwhichtheTwinTransitionspacepresentedinfigure1isasubset.Althoughrelatednessisdefinedbetweentechnologypairs,itisalsopossibletoidentifytheknowl-edgestructureofindividualAsiancities.Thus,foreachcityr,wecalculatedthedensityoftech-nologyproductioninthevicinityofindividualtechnologiesi.FollowingHidalgoetal.(2007)andBoschmaetal.(2015),thedensityofknowledgeproductionaroundagiventechnologyiincityrattimetisderivedfromthetechnologicalrelatednessφi,j,toftechnologyitoallothertechnologiesjinwhichthecityhasrelativetechnologicaladvantage(RTA),dividedbythesumoftechnologicalrelatednessoftechnologyitoalltheothertechnologiesjattimet:RELATEDNESSDENSITYi,r,t=100RTAisabinaryvariablethatassumesthevalue1whenacitypossessesagreatershareofpatentsintechnologyclassithanthereferencecity,andassumesvalue0otherwise.AcityrhasRTAinproductionoftechnologicalknowledgei(r=1,...,n;i=1,…,k)suchthatRTAtr,i=1if:patentstr,i∑ipatentstr,i∑rpatentstr,i∑r∑ipatentstr,iAppendix2.Measuringrelatednessandrelatednessdensity.j϶r,j≠ij≠i∑φij∑φij>164TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsTable3.1TwinTransitiondiversificationmodelDependentvariable:Entry(1)(2)(3)(4)rel0.007(0.0003)greenrel-0.00001(0.0004)-0.0002(0.0004)digitalrel0.001(0.0005)0.001(0.001)period-0.005(0.002)0.008(0.003)0.006(0.002)0.007(0.003)Constant0.027(0.039)0.144(0.040)0.119(0.044)0.120(0.044)Observations17,64517,64517,64517,645CitiesFEYESYESYESYESR20.1430.1110.1110.111AdjustedR20.1300.0980.0980.098Note:p<0.05;p<0.01;p<0.001Appendix3.DiversificationmodelsTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents65Table3.2GreentransitiondiversificationmodelDependentvariable:Entry(1)(2)(3)(4)greenrel0.008(0.0002)0.007(0.0003)0.007(0.001)digitalrel0.007(0.0003)0.001(0.0004)period-0.016(0.003)-0.012(0.003)-0.016(0.003)-0.016(0.003)Additivemanufacturing-0.0003(0.0004)Artificialintelligence-0.001(0.001)Augmentedreality0.0002(0.001)Autonomousrobots-0.001(0.0004)Autonomousvehicles0.004(0.001)Blockchain-0.001(0.001)Cloudcomputing0.002(0.001)Cybersecurity0.003(0.001)Internetofthings-0.004(0.001)Quantumcomputers0.001(0.0005)Smartgrids-0.002(0.001)Constant0.075(0.008)0.084(0.008)0.071(0.008)0.069(0.008)Observations10,14310,14310,14310,143CitiesFENONONONOR20.1100.0680.1110.115AdjustedR20.1100.0680.1100.114Note:p<0.05;p<0.01;p<0.00166TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsTable3.3DigitaltransitiondiversificationmodelDependentvariable:Entry(1)(2)(3)(4)greenrel0.003(0.0002)0.0003(0.0003)digitalrel0.006(0.0003)0.005(0.0004)0.005(0.001)period-0.012(0.003)-0.010(0.003)-0.010(0.003)-0.006(0.003)Air&Waterpollutionreduction0.0003(0.001)Batteries-0.0002(0.001)Biofuels0.004(0.001)Efficientpower&combustion0.0003(0.001)Geothermalenergy-0.0003(0.0004)Greenbuildings0.003(0.001)Greentransports0.0001(0.001)Greenhousegascapture0.001(0.0004)Hydrogen-0.00003(0.001)Marine&hydroenergy-0.0005(0.0004)Nuclearenergy-0.00001(0.0004)Otherenergystorage-0.001(0.001)Solarenergy-0.002(0.001)Wastemanagement-0.004(0.001)TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents67Waterrelatedadaptationtechnologies-0.0001(0.001)Windenergy0.00001(0.0004)Constant0.071(0.008)0.053(0.008)0.053(0.008)0.042(0.009)Observations7,5027,5027,5027,502CitiesFENONONONOR20.0300.0480.0480.059AdjustedR20.0300.0480.0480.057Note:p<0.05;p<0.01;p<0.00168TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentshttps://www.paballand.com/asg/wb-asia/treemaps/applicants/smart-grids.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/air-&-water-pollution-reduc-tion.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/biofuels.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/nuclear-energy.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/blockchain.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/wind-energy.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/marine-&-hydroenergy.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/efficient-power&combustion.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/green-transports.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/cloud-computing.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/internet-of-things.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/waste-management.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/solar-energy.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/other-energystorage.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/batteries.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/cybersecurity.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/green-buildings.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/augmented-reality.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/additivemanufacturing.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/hydrogen.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/geothermal-energy.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/greenhousehttps://www.paballand.com/asg/wb-asia/treemaps/applicants/greenhouse-gas-capture.htmlgascapture.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/quantum-computers.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/autonomous-robots.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/water-related-adaptatiohttps://www.paballand.com/asg/wb-asia/treemaps/applicants/water-related-adapta-tion-technologies.htmltechnologies.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/artificial-intelligence.htmlhttps://www.paballand.com/asg/wb-asia/treemaps/applicants/autonomous-vehicles.htmlAppendix4.Keyapplicantsintheworldin27TwinTransitiontechnologiesTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents69Thereare27RelatednessDensitymapsintotal,foreachofthe27technologies.Linkstoaninter-activeHTMLfilecanbefoundbelow.Clickingoneachcityprovidesdetailsintermsoftherankingsofeachcityconcerningthenumberofpatents,theRelatednessDensity,andtheRCAinthatpar-ticulartechnology.WealsoincludedaLocationIndexwhichsumstherankingsofthethreedimen-sionsforeachcityintermsofpatentquantityinagiventechnology,theirrelativespecialization(RCA)andtheirRelatednessDensity.https://www.paballand.com/asg/wb-asia/maps/smart-grids.htmlhttps://www.paballand.com/asg/wb-asia/maps/air-&-water-pollution-reduction.htmlhttps://www.paballand.com/asg/wb-asia/maps/biofuels.htmlhttps://www.paballand.com/asg/wb-asia/maps/nuclear-energy.htmlhttps://www.paballand.com/asg/wb-asia/maps/blockchain.htmlhttps://www.paballand.com/asg/wb-asia/maps/wind-energy.htmlhttps://www.paballand.com/asg/wb-asia/maps/marine-&-hydro-energy.htmlhttps://www.paballand.com/asg/wb-asia/maps/efficient-power-&-combustion.htmlhttps://www.paballand.com/asg/wb-asia/maps/green-transports.htmlhttps://www.paballand.com/asg/wb-asia/maps/cloud-computing.htmlhttps://www.paballand.com/asg/wb-asia/maps/internet-of-things.htmlhttps://www.paballand.com/asg/wb-asia/maps/waste-management.htmlhttps://www.paballand.com/asg/wb-asia/maps/solar-energy.htmlhttps://www.paballand.com/asg/wb-asia/maps/other-energy-storage.htmlhttps://www.paballand.com/asg/wb-asia/maps/batteries.htmlhttps://www.paballand.com/asg/wb-asia/maps/cybersecurity.htmlhttps://www.paballand.com/asg/wb-asia/maps/green-buildings.htmlhttps://www.paballand.com/asg/wb-asia/maps/augmented-reality.htmlhttps://www.paballand.com/asg/wb-asia/maps/additive-manufacturing.htmlhttps://www.paballand.com/asg/wb-asia/maps/hydrogen.htmlhttps://www.paballand.com/asg/wb-asia/maps/geothermal-energy.htmlhttps://www.paballand.com/asg/wb-asia/maps/greenhouse-gas-capture.htmlhttps://www.paballand.com/asg/wb-asia/maps/quantum-computers.htmlhttps://www.paballand.com/asg/wb-asia/maps/autonomous-robots.htmlhttps://www.paballand.com/asg/wb-asia/maps/water-related-adaptationhttps://www.paballand.com/asg/wb-asia/maps/water-related-adaptation-technologies.htm-ltechnologies.htmlhttps://www.paballand.com/asg/wb-asia/maps/artificial-intelligence.htmlhttps://www.paballand.com/asg/wb-asia/maps/autonomous-vehicles.htmlAppendix5.MapsofRelatednessDensityofAsiancitiesfor27TwinTransitiontechnologies70TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsThelinkbelowcontainsanExcelfilewithinformationhowmuchRelatednessDensitycouldbeaddedtoacityforeachdigitalandgreentechnologybyallother127cities.https://www.dropbox.com/s/woxoyku58o4dk7d/complementarity-merged.csv?dl=0Appendix6.Listofcomplementaritiesof128Asiancitiesfor27TwinTransitiontechnologiesTheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatents7172TheLeadersoftheTwinTransitioninAsia:MappingCapabilitiesthroughDigitalandGreenPatentsSeoulCenterforFinanceandInnovationWebsite:https://worldbank.org/seoulcenterSeoulCenterforFinanceandInnovation