中国氢燃料电池技术开发和应用进展-28页VIP专享VIP免费

Progress in
hydrogen fuel
cell technology
development
and deployment
in China
Global Challenges in Focus
Hongxing (Tonny) Xie*
Peter Oksen**
Xingxing Guo*
Xin He*
Yue Bian*
*Bluetech Clean Air Alliance, Beijing
**WIPO GREEN, Geneva
With contributions from
Wanyi Wang, United Nations
Development Programme (UNDP)
China Office, and
Ziyuan Wang, Foshan Institute of
Environment and Energy Technology,
China
2
Executive summary
Hydrogen has several potential advantages as an energy form and storage
medium in relation to climate change and environmental impacts. However,
current hydrogen use is based almost exclusively on fossil fuel, and this means
it is not climate change neutral or beneficial. Major technological advances
are being made towards producing “green hydrogen,” but this remains more
expensive than fossil-based hydrogen. Hydrogen-use technologies are also
being developed, but few are ready to be scaled up, so hydrogen as a form
of clean energy remains largely a technology of the future.
The potential is nevertheless so attractive that many governments worldwide
have formulated development plans for hydrogen and, together with the
private sector, they are investing significantly in research and development.
In China, hydrogen and fuel cells are expected to play an important role
in fulfilling the official pledge of national carbon neutrality by 2060 and are
already embedded in numerous economic development plans and policies.
More than 100 standards to regulate the production and use of hydrogen
in China have been formulated, which is a prerequisite for scaling up the
technology. Innovation in the field has increased dramatically in recent years,
and this is reflected in the current global dominance of Chinese-based patent
applications. Several Chinese provincial governments and industrial city
clusters have embarked on ambitious programs to develop and promote
hydrogen in transport – notably heavy-duty and long-haul transport – and
industry.
Despite the technological and economic obstacles associated with scaling
up and mainstreaming hydrogen-based energy, there are strong indications
that the political will and economic means are there to make it an important
complement to other new and renewable energies.
Introduction
Hydrogen is high on the political and innovation agenda of many countries,
research institutions and companies. It is a highly versatile energy storage
medium with great potential for contributing to a transition towards car-
bon-neutral energy. However, hydrogen sources are dominated by fossil
fuels, and the technical and economic challenges to scaling up the use of
hydrogen remain considerable. This report provides an overview of current
hydrogen and fuel cell technology trends internationally, and a focused
review of China, the largest deployment market for hydrogen and fuel cell
technologies. In recent years, China has actively promoted research and
development(R&D), demonstration and commercial applications of hydrogen
technologies. The report provides insights into current policy, planning,
standards, patents, pilot projects and demonstration activities in hydrogen
and fuel cell development in China.
3
Hydrogen and fuel cell technology –
international trends and potential
The advantage of hydrogen as
an energy storage medium
Hydrogen as an energy source is gaining international momen-
tum, and is being strongly promoted in business and policies.
Several technologies are available that can harness the
advantages of hydrogen. To make it economically attractive,
however, further development and scaling up is required (IEA,
2019). That makes any assessments of its future role as a
source of energy and storage medium uncertain.
Hydrogen is a colorless and odorless gas, and is the most
abundant element on Earth and in the universe. It is ener-
gy-dense and combustible with oxygen, producing thermal
energy with water as residue, and is therefore a fuel with no
carbon dioxide(CO
2
) or other unwanted gas emissions in the
end-use process. In the transport sector, for example, that
can help to improve air quality in large cities. It is a potentially
clean and unlimited energy source that is already used in many
chemical and other industries. Unfortunately, it does not exist
in nature in a pure form and must therefore be produced.1
Clean and dirty hydrogen: green,
gray, brown and blue
More than 95percent of the hydrogen produced today
originates in fossil fuels, with natural gas being the dominant
source. Around 6percent of natural gas extracted globally
and 2percent of coal is used to produce hydrogen (IEA, 2019).
Natural gas is the cheapest source of hydrogen, and steam
methane reforming(SMR) is the most common production
method. Hydrogen produced in this way is often referred to
as gray hydrogen. The process takes place at temperatures of
between 700°C and 1100°C, and is energy intensive. Moreover,
by-products include CO2 and other greenhouse gases. The
production of 1ton of hydrogen can result in the production
of more than 9tons of CO
2
, which is close to the level of
emissions resulting from the combustion of gasoline (1kg of
hydrogen is energy equivalent to 1gallon of gasoline, which
emits around 9kg of CO2) (Rapier, 2021). Gasification of coal
is a widespread source of hydrogen in several countries, often
referred to as brown hydrogen. With the application of water
and heat the coal produces syngas, which is a mixture of
CO
2
, carbon monoxide, hydrogen, methane and ethylene. The
process is highly polluting and has been in use for hundreds
of years, producing what was often referred to as “town-gas”
(Farmer, 2020).
1 Hydrogen is not a primary source of energy like oil,
coal, wind or solar but is more comparable to an energy
carrier or medium such as electricity. In this report, we
do not dwell on that distinction, as it is of little practical
consequence. We therefore refer to hydrogen both as a
source of energy and as a storage medium.
Production of hydrogen creates CO
2
emissions equivalent to
those of Indonesia and the United Kingdom put together (IEA,
2019). The use of hydrogen today is, therefore, not carbon
neutral; it can be seen as a fossil fuel in the same family as
oil, coal and, of course, natural gas.
However, producing carbon-neutral, or green, hydrogen is
perfectly possible. This area of technology is developing
rapidly, although it remains more expensive than natural gas.
Rather than using natural gas as a raw material to produce
hydrogen, water can be split into hydrogen and oxygen by
electrolysis, whereby the anode produces oxygen and the
cathode hydrogen. The process requires a lot of electricity, but
if that electricity comes from renewable energy sources, the
hydrogen will likely be carbon neutral. Regions with abundant
renewable energy, such as the Middle East, northern Africa,
South America and Australia (solar energy), could become
hydrogen production regions. It is not unrealistic that green
hydrogen could hit cost parity with gray hydrogen as early as
2030 (Hydrogen Council and McKinsey, 2021). The European
Union is aiming to achieve 40GW of electrolyzer capacity by
2030, which indicates strong political will to develop green
hydrogen quickly. It is forecast that about 17percent of all
hydrogen produced in China will be green by 2030, and that
the total amount of green hydrogen produced annually will
exceed 18milliontons (China Hydrogen Alliance, 2019).
Nonetheless, green hydrogen needs to be scaled up signifi-
cantly to compete with gray and brown hydrogen. Optimistic
calculations of break-even points between green and gray
hydrogen include provision for policy support initiatives such
as carbon taxes (Hydrogen Council and McKinsey, 2021).
Another option is to replace natural gas with biogas in the
hydrogen production process. Biogas is most commonly
produced through anaerobic digestion of waste biomass,
gasification, or extraction of landfill gas, but it must be upgraded
to biomethane with the same high (more than 90percent)
level of methane content that characterizes natural gas. That
process also requires energy, but it can be quite efficient,
with up to 87percent of the methane contained in the biogas
separated. Pure hydrogen can then be produced from the
biomethane using the SMR process in a similar fashion to
the process using natural gas (Saur and Milbrandt, 2014).
Converting biogas directly to hydrogen is also possible. A
pilot plant financed by the European Union is in operation in
Italy. It uses a palladium-based membrane reactor technology
(combined chemical conversion and membrane separation
process), which can produce hydrogen with a 70percent
conversion efficiency at a relatively low temperature of around
500°C (CORDIS, 2020).
By using carbon capture and storage(CCS) technology in
the natural gas extraction process, low-carbon hydrogen
ProgressinhydrogenfuelcelltechnologydevelopmentanddeploymentinChinaGlobalChallengesinFocusHongxing(Tonny)XiePeterOksenXingxingGuoXinHeYueBianBluetechCleanAirAlliance,BeijingWIPOGREEN,GenevaWithcontributionsfromWanyiWang,UnitedNationsDevelopmentProgramme(UNDP)ChinaOffice,andZiyuanWang,FoshanInstituteofEnvironmentandEnergyTechnology,China2ExecutivesummaryHydrogenhasseveralpotentialadvantagesasanenergyformandstoragemediuminrelationtoclimatechangeandenvironmentalimpacts.However,currenthydrogenuseisbasedalmostexclusivelyonfossilfuel,andthismeansitisnotclimatechangeneutralorbeneficial.Majortechnologicaladvancesarebeingmadetowardsproducing“greenhydrogen,”butthisremainsmoreexpensivethanfossil-basedhydrogen.Hydrogen-usetechnologiesarealsobeingdeveloped,butfewarereadytobescaledup,sohydrogenasaformofcleanenergyremainslargelyatechnologyofthefuture.Thepotentialisneverthelesssoattractivethatmanygovernmentsworldwidehaveformulateddevelopmentplansforhydrogenand,togetherwiththeprivatesector,theyareinvestingsignificantlyinresearchanddevelopment.InChina,hydrogenandfuelcellsareexpectedtoplayanimportantroleinfulfillingtheofficialpledgeofnationalcarbonneutralityby2060andarealreadyembeddedinnumerouseconomicdevelopmentplansandpolicies.Morethan100standardstoregulatetheproductionanduseofhydrogeninChinahavebeenformulated,whichisaprerequisiteforscalingupthetechnology.Innovationinthefieldhasincreaseddramaticallyinrecentyears,andthisisreflectedinthecurrentglobaldominanceofChinese-basedpatentapplications.SeveralChineseprovincialgovernmentsandindustrialcityclustershaveembarkedonambitiousprogramstodevelopandpromotehydrogenintransport–notablyheavy-dutyandlong-haultransport–andindustry.Despitethetechnologicalandeconomicobstaclesassociatedwithscalingupandmainstreaminghydrogen-basedenergy,therearestrongindicationsthatthepoliticalwillandeconomicmeansaretheretomakeitanimportantcomplementtoothernewandrenewableenergies.IntroductionHydrogenishighonthepoliticalandinnovationagendaofmanycountries,researchinstitutionsandcompanies.Itisahighlyversatileenergystoragemediumwithgreatpotentialforcontributingtoatransitiontowardscar-bon-neutralenergy.However,hydrogensourcesaredominatedbyfossilfuels,andthetechnicalandeconomicchallengestoscalinguptheuseofhydrogenremainconsiderable.Thisreportprovidesanoverviewofcurrenthydrogenandfuelcelltechnologytrendsinternationally,andafocusedreviewofChina,thelargestdeploymentmarketforhydrogenandfuelcelltechnologies.Inrecentyears,Chinahasactivelypromotedresearchanddevelopment(R&D),demonstrationandcommercialapplicationsofhydrogentechnologies.Thereportprovidesinsightsintocurrentpolicy,planning,standards,patents,pilotprojectsanddemonstrationactivitiesinhydrogenandfuelcelldevelopmentinChina.3Hydrogenandfuelcelltechnology–internationaltrendsandpotentialTheadvantageofhydrogenasanenergystoragemediumHydrogenasanenergysourceisgaininginternationalmomen-tum,andisbeingstronglypromotedinbusinessandpolicies.Severaltechnologiesareavailablethatcanharnesstheadvantagesofhydrogen.Tomakeiteconomicallyattractive,however,furtherdevelopmentandscalingupisrequired(IEA,2019).Thatmakesanyassessmentsofitsfutureroleasasourceofenergyandstoragemediumuncertain.Hydrogenisacolorlessandodorlessgas,andisthemostabundantelementonEarthandintheuniverse.Itisener-gy-denseandcombustiblewithoxygen,producingthermalenergywithwaterasresidue,andisthereforeafuelwithnocarbondioxide(CO2)orotherunwantedgasemissionsintheend-useprocess.Inthetransportsector,forexample,thatcanhelptoimproveairqualityinlargecities.Itisapotentiallycleanandunlimitedenergysourcethatisalreadyusedinmanychemicalandotherindustries.Unfortunately,itdoesnotexistinnatureinapureformandmustthereforebeproduced.1Cleananddirtyhydrogen:green,gray,brownandblueMorethan95percentofthehydrogenproducedtodayoriginatesinfossilfuels,withnaturalgasbeingthedominantsource.Around6percentofnaturalgasextractedgloballyand2percentofcoalisusedtoproducehydrogen(IEA,2019).Naturalgasisthecheapestsourceofhydrogen,andsteammethanereforming(SMR)isthemostcommonproductionmethod.Hydrogenproducedinthiswayisoftenreferredtoasgrayhydrogen.Theprocesstakesplaceattemperaturesofbetween700°Cand1100°C,andisenergyintensive.Moreover,by-productsincludeCO2andothergreenhousegases.Theproductionof1tonofhydrogencanresultintheproductionofmorethan9tonsofCO2,whichisclosetothelevelofemissionsresultingfromthecombustionofgasoline(1kgofhydrogenisenergyequivalentto1gallonofgasoline,whichemitsaround9kgofCO2)(Rapier,2021).Gasificationofcoalisawidespreadsourceofhydrogeninseveralcountries,oftenreferredtoasbrownhydrogen.Withtheapplicationofwaterandheatthecoalproducessyngas,whichisamixtureofCO2,carbonmonoxide,hydrogen,methaneandethylene.Theprocessishighlypollutingandhasbeeninuseforhundredsofyears,producingwhatwasoftenreferredtoas“town-gas”(Farmer,2020).1Hydrogenisnotaprimarysourceofenergylikeoil,coal,windorsolarbutismorecomparabletoanenergycarrierormediumsuchaselectricity.Inthisreport,wedonotdwellonthatdistinction,asitisoflittlepracticalconsequence.Wethereforerefertohydrogenbothasasourceofenergyandasastoragemedium.ProductionofhydrogencreatesCO2emissionsequivalenttothoseofIndonesiaandtheUnitedKingdomputtogether(IEA,2019).Theuseofhydrogentodayis,therefore,notcarbonneutral;itcanbeseenasafossilfuelinthesamefamilyasoil,coaland,ofcourse,naturalgas.However,producingcarbon-neutral,orgreen,hydrogenisperfectlypossible.Thisareaoftechnologyisdevelopingrapidly,althoughitremainsmoreexpensivethannaturalgas.Ratherthanusingnaturalgasasarawmaterialtoproducehydrogen,watercanbesplitintohydrogenandoxygenbyelectrolysis,wherebytheanodeproducesoxygenandthecathodehydrogen.Theprocessrequiresalotofelectricity,butifthatelectricitycomesfromrenewableenergysources,thehydrogenwilllikelybecarbonneutral.Regionswithabundantrenewableenergy,suchastheMiddleEast,northernAfrica,SouthAmericaandAustralia(solarenergy),couldbecomehydrogenproductionregions.Itisnotunrealisticthatgreenhydrogencouldhitcostparitywithgrayhydrogenasearlyas2030(HydrogenCouncilandMcKinsey,2021).TheEuropeanUnionisaimingtoachieve40GWofelectrolyzercapacityby2030,whichindicatesstrongpoliticalwilltodevelopgreenhydrogenquickly.Itisforecastthatabout17percentofallhydrogenproducedinChinawillbegreenby2030,andthatthetotalamountofgreenhydrogenproducedannuallywillexceed18milliontons(ChinaHydrogenAlliance,2019).Nonetheless,greenhydrogenneedstobescaledupsignifi-cantlytocompetewithgrayandbrownhydrogen.Optimisticcalculationsofbreak-evenpointsbetweengreenandgrayhydrogenincludeprovisionforpolicysupportinitiativessuchascarbontaxes(HydrogenCouncilandMcKinsey,2021).Anotheroptionistoreplacenaturalgaswithbiogasinthehydrogenproductionprocess.Biogasismostcommonlyproducedthroughanaerobicdigestionofwastebiomass,gasification,orextractionoflandfillgas,butitmustbeupgradedtobiomethanewiththesamehigh(morethan90percent)levelofmethanecontentthatcharacterizesnaturalgas.Thatprocessalsorequiresenergy,butitcanbequiteefficient,withupto87percentofthemethanecontainedinthebiogasseparated.PurehydrogencanthenbeproducedfromthebiomethaneusingtheSMRprocessinasimilarfashiontotheprocessusingnaturalgas(SaurandMilbrandt,2014).Convertingbiogasdirectlytohydrogenisalsopossible.ApilotplantfinancedbytheEuropeanUnionisinoperationinItaly.Itusesapalladium-basedmembranereactortechnology(combinedchemicalconversionandmembraneseparationprocess),whichcanproducehydrogenwitha70percentconversionefficiencyatarelativelylowtemperatureofaround500°C(CORDIS,2020).Byusingcarboncaptureandstorage(CCS)technologyinthenaturalgasextractionprocess,low-carbonhydrogen4canbeproduced.CCStechnologyremovesby-productsthatareharmfultotheclimate.Itstillrequiresconsiderabledevelopmentbut,bysomeestimates,itcouldbecommerciallycompetitivewithgrayhydrogenby2030(HydrogenCouncilandMcKinsey,2021).Others,however,aremuchlessoptimistic(Barnard,2021).HydrogenproducedfromfossilfuelsusingCCStechnologyiscommonlyknownasbluehydrogen.Supply-sideconsiderationsarenotaddressedtoalargeextentinthisreport,thefocusofwhichisoncurrenthydrogenusetechnologiesandthoseunderdevelopment,ratherthanthehydrogenproductionprocess.Remember,though,thatthetechnologiesdiscussedarenogreenerormorecarbonneutralthanthehydrogenthatfeedsthem.Ahydrogen-basedtechnologyonitsownisnotnecessarilygreenatall.HydrogentechnologyHydrogenhasgreatpotentialinseveraleconomicsectors.Generally,itenterstheenergysystemasastoragemediumorfuel.Theenergycanbeextractedthroughdirectcombustionorelectro-chemicalconversioninfuelcells.Itcanbetransportedasagasorinliquidform,similartoliquefiednaturalgas.Paste-basedformsofhydrogenarealsobeingdeveloped,whichmayextendtheapplicationofhydrogenintransport(Burgess,2021).Herethehydrogenischemicallyboundinstablesolidmagnesiumhydrideandcanbereleasedbyaddingwaterinacontrolledprocess.Hydrogenofferspotentiallysuperiorrefuelingtimesanddrivingrangesforheavyandlong-haultransportandpersonalvehiclescomparedwithcurrentbattery-basedelectricvehicles(EVs).Hydrogenalsohasconsiderablepotentialforstorageofexcessrenewableenergyfromhard-to-controlsourcessuchaswindorsolar.Theexcessenergycanfeedintoawater-electrolysisprocess,wherebyhydrogenisproducedforstorage,transportandconsumption.DirectfuelHydrogencanbeusedasfuelinseveralsectors.Itcanbeusedingasturbinestogeneratepower.Inbuildingsitcanbemixedwithnaturalgasinexistinggasnetworksfordomesticuse.Itcanalsobeusedasfuelininternalcombustionengines,whichisespeciallyrelevantforheavyvehiclessuchastrucks,butitisalsoincreasinglybeingviewedasanalternativelow-carbonfuelforaviationandshipping(IEA,2019).Shippingaccountsfor2percentofglobalgreenhousegasemissions,80percentofwhicharegeneratedbylong-distancevessels.Currently,themosteconomicpathtowardzeroemissionsinshippingistouseammoniaasfuelininternalcombustionengines.AmmoniacanbeproducedfromhydrogenbyaddingnitrogenfromairintheHaber-Boschprocess.Liquidammonia,unlikeliquidhydrogen,doesnotrequirerefrigerationtoextremetemperatures.Italsohashigherenergydensityandisthere-foreefficienttotransport.However,fuelingalllong-distanceshippingwithammoniawouldrequireathree-tofour-foldincreaseincurrentglobalammoniaproduction(HydrogenCouncilandMcKinsey,2021;Yara,2021).FuelcellsFuelcellsemployanelectro-chemicalprocessthatproduceselectricityfromhydrogenandoxygenwithoutanyintermediatestorageorcombustion.Theprocessisreportedlytwiceasefficientasinternalcombustionenginesandturbines(Naharetal.,2017)andthewasteproductiswaterand,inthecaseofsomefuelcelltypes,CO2.Fuelcellsaresimilartobatteriesintheirfunctionbutrequireaconstantsupplyoffuelintheformofhydrogenandoxygen(air).Fuelcellsarescalableandcanbeusedassmall,low-wattagepowersupplyunits(suchasfordomesticorvehicleuse),oraslargeindustrialenergystorageormegawattpowerplants.Thetechnologyhasbeeninusesincethe1960sandisthusrelativelymature.ItwasfamouslyusedintheNASASpaceShuttleprogramtoprovideonboardelectricityanddrinkingwater.Likeabattery,afuelcelliscomposedofananode,acathodeandanelectrolyte.Fuelcellsexistinseveralforms,dependingonthematerialsused.Insomecases,theelectrodes(anodeandcathode)aremadeofnoblemetalslikeplatinum,makingthemexpensive.Theelectrolytemaybesolidorliquid.Theelectro-chemicalprocessgeneratesheat,withsomesystemsoperatingathightemperatures(700–1000°C)andothersfunctioningattemperatureswellbelow100°C.Energyconversionefficiencyvariesfrom60percentto70percentbutcanbeincreasedtomorethan80percentiftheheatgeneratedisutilizedproductivelyinco-generationsystems(HydrogenEurope,2021).Themostcommontypesoffuelcells,eachwithdistinctefficiency,costandmaintenancecharacteristics,areprotonexchangemembranefuelcells(PEMFCs),solidoxidefuelcells(SOFCs),alkalinefuelcells(AFCs),moltencarbonatefuelcells(MCFCs)andphosphoricacidfuelcells(PAFCs).ThePEMFCisthemostcommonlyusedfuelcellinvehicles.Itdeploysapolymericmembraneastheelectrolyteandcarbonelectrodescontainingplatinum.Thelattermakessuchcellsrelativelyexpensive,buttheplatinumcanberecycled,andresearchisbeingdoneonalternativesthatmayreducecosts.5Thecellsrequireonlyoxygenandpurehydrogenasfuel,andproduceonlywaterasresidue.Theyoperateatalowtemperatureofaround80°Candcanaccommodatetherequirementofvehiclesforinitialhighdemandofhigh-densitypower(figure1).Infuelcellelectricvehicles(FCEVs)usingpurehydrogentodriveelectricmotors,therearenotailpipeemissionsotherthanwater.Forhydrogentobeadoptedbroadly,expensiverefuelinginfrastructuremustbeputinplace.Refuelingwithhydrogenisnotassimpleaswithgasoline.Inprinciple,hydrogencanbeproducedonsitebyaddinganelectrolyzer(aunithostingthewaterelectrolysisprocess)andapowerandwatersource(figure2).Thateliminatestheneedforliquefactionandtransporttotherefuelingstation.However,thehydrogenproducedmustbecompressedbeforeitisdispensedtothevehicle,andthecompressionprocessgeneratesheatthatmustsubsequentlyberemovedthroughacoolingprocess.Liquefactionisnotstrictlynecessaryfortransportbutmayimproveefficiency.Theliquefactionprocessinvolvescompressionandcoolingtolessthan−240°C,whichdemandsasignificantamountofenergy.Allthecomponentsofarefuelingsystemrequireenergyandequipment,makingrefuelingrelativelycomplexandexpensive.PEMFC–ProtonExchangeMembraneFuelCells•Electrolyte:water-based,acidicpolymermembrane•Alsocalledpolymerelectrolytemembranefuelcells•Useaplatinum-basedcatalystonbothelectrodes•Generallyhydrogenfuelled•Operateatrelativelylowtemperatures(below100°C)•High-temperaturevariantsuseamineralacid-basedelectrolyteandcanoperateupto200°C•Electricaloutputcanbevaried,idealforvehiclesElectronFlowHydrogenExcessHydrogenWaterOxygenElectrolyteHydrogenIonsAnodeCathodeCATHODEANODEH2O212345H2ElectrolyserUPSTREAMREFUELLINGSTATIONLow-PressureStorageHigh-PressureStoragePrecoolingDispenserCompressorShellHydrogenStudy©ShellFigure1.PrinciplesofPEMFCs(HydrogenEurope,2021).Figure2.Hydrogenrefuelingprocess(HydrogenEurope,2021).6CurrenttrendsandinternationalpotentialHydrogenisgaininggrounddespitetheeconomicandtechnicalchallenges.Owingtoitsmanyusesandversatility,notleastasapotentiallyclean,unlimitedandclimatechange-neutralenergysource,intensiveR&Distakingplaceinmanycountriesintheprivateandpublicsectors.Findingalternativeandcheaperwaysofproducinggreenhydrogenhasbecomeahighpriority,asgreenhydrogenwillbeamajorsellingpointforscalinguphydrogentechnologies.Governmentsareincreasinglyadoptinghydrogenpoliciesand,byearly2021,morethan30countrieshadproducedhydrogenroadmaps.Worldwide,governmentshavecommittedmorethanUSD70billioninpublicfundingtohydrogendevelopment(HydrogenCouncilandMcKinsey,2021).Industryisstartingtoseeitspotential,andseveralhydrogenindustrycompanieshaveexperiencedsoaringstockmarketprices,raisingconcernsoverafinancial“hydrogenbubble.”Theentryofbigindustryplayersintothefieldis,however,asignthatthereisrealpotentialandexpectationsofmarketgainsinthenearfuture.China,theRepublicofKorea,JapanandGermanyareoftencitedasleadingthewayindevelopinghydrogensolutions,butAustralia,France,theUnitedStates,theUnitedKingdomandCanadaarealsoactive(Bloomberg,2021).Europehasthehighestnumberofprojects,especiallyonalargeindustrialscale(HydrogenCouncilandMcKinsey,2021).In2020,theEuropeanCommissionpublishedahydrogenstrategyandroadmapupto2050,inwhichambitiousplansfortheproductionanduseofgreenhydrogenareoutlined.InternationalDevelopmentsJapanhasforyearsbeenworkingtomakethetransitiontoahydrogeneconomy.TheToyotaMirai,thefirstmass-producedhydrogenFCEV,hasbeenonthemarketsince2014(WEF,2018).Thismid-sizedcarhasarangeof500kmonatank,anditsbiggestmarkethasbeentheUnitedStates.Japanalsohoststheworld’slargestoperationalhydrolysisplant,whichhasacapacityof10MWandisfedfromanearby20MWphotovoltaicplant(Godske,2021b).In2020,theRepublicofKoreaissueditshydrogeneconomyroadmap,envisagingtheproductionof6.2millionhydrogenandfuelcell-basedvehiclesandtheconstructionof1,200refuelingstationsby2040(Engie,2020;Bloomberg,2021).InIndia,apublicauctionforgreenhydrogenproductionisplannedfor2021withthepurposeofproducinggreenammonia,possiblyaspartofmandatoryminimumgreenhydrogenpurchasesforsomeindustries.Withthecostofsolarpowerfalling,asseeninrecenttenderbidsinIndia,theelectrolysisofgreenhydrogenisbecomingmoreeconomicallyviable.Publicauctionscouldhelptolowerprices,ashappenedinthecaseofwindandsolarpower(Saurabh,2021).Chilehasalreadylauncheditsfirstnationaltenderforgreenhydrogen,with10companiesbiddingbySeptember2021.Thewinner(s)willreceivegovernmentprojectfinancingofuptoUSD30million.Chile,withitsenormoussolarenergypotential,isdevelopingastrategyto“exportsunshine”intheformofhydrogenviaseatankers.Thatcouldinturnbringdownthepriceofgreenhydrogenglobally(GlobalEnergyPrize,2021).7InGermany,morethan30power-to-gasdemonstrationprojectsareunderway.Hydrogenisconsideredakeyfuturesustainabilitytechnology,andtheGermanGovernmenthasallocated7billioneuroupto2030tosupportthedevelopmentofhydrogen(Godske,2021a).Inearly2021,theFederalMinistryofEducationandResearchhadalreadyallocated700millioneurotosupportthreemajorprojectsfortheserialproductionofelectrolysisunits,hydrogenproductiondirectlyoff-gridfromoffshorewindmills,andthedevelopmentofhigh-pressuretanksandpipestostorehydrogen(BMBF,2021).Theworld’slargestelectrolysisplantthusfarisbeingbuiltnearLeipzig.Withplannedcapacityof24MW,itwillprimarilysupplylocalindustrywithhydrogenthroughpipelines.InHamburg,anevenlargerplantof100MWisdueforcompletionin2025(Godske,2021b).InnorthernGermany,atrainpoweredbyahydrogenfuelcellrunsona100kmstretchoftrack.Thetrain,builtbyAlstom,aFrenchrailtransportmanufacturer,canrunfor1,000kmonatankofhydrogen,andenergynotuseddirectlyisstoredinbatteries(WEF,2018).In2020,asimilartrainwastestedsuccessfullyinGroeningen,theNetherlands,showingthatitcouldbeafullysustainablealternativetodieseltrainsrunningonthesamenetwork(Alstom,2021).InAustriaa6MWhydrolysisplantopenedin2019(Godske,2021b).InParis,afleetof600taxisoperateonfuelcells.Denmarkishometotheworld’sfirstcountrywidehydrogenrefuelingstationnetwork,andhalfthepopulationnowliveswithin15kmofastation(Bloomberg,2021).Ørsted,amajorDanishenergycompany,isleadingaconsortiumthatplanstoinstallhydrogenproductioncapacityof1.3GWinCopenhagenby2030(Godske,2021b).HaldorTopsøe,amajorDanishpetrochemicalcompany,planstobuildanewfactorytoproduceelectrolysisunits.Theplantwillproduceunitswith500MWcapacityperyear.ThedecisionbytheEuropeanUniontosupportatleast6GWofelectrolysiscapacityuntil2024andatleast40GWuntil2030isoneoftheincentivesbehinddevelopmentsinDenmark(Andersen,2021).However,thecountryisyettoproduceacomprehensivehydrogenpolicyandroadmap.InNorway,Yara,amajorfertilizercompany,isjoiningforceswithStatkraft,aNorwegianutilitycompany,tousehydropowerforalarge-scalecommercialammoniaplantinPorsgrunn.Theplanistousehydrogenelectrolysistoproduceemissions-freeammoniaforuseasfuelinships,asfertilizerandforindustrialapplications.Byrepurposinganexistingammoniaplant,thecapitalinvestmentwasdrasticallyreduced,andtheprojectcouldpavethewayforcommerciallycompetitivegreenammonia.Besidesproducinganimportantexportarticle,theplantmayalsohelpgivethecountry’smaritimeindustryanearlycompetitiveadvantage(Casey,2021;Yara,2021).VehiclehydrogenfuelingstationinEsbjerg,Denmark,March2021(photo:PeterOksen).8Hydrogenandfuelcells:ahighpriorityforChinaInChinatheGovernmentandbusinessandresearchinstitutionsaretakingakeeninterestintheuseofhydrogenandfuelcells.Astheworld’slargestmarketforEVs,accountingforalmosthalfoftheglobalstockin2020(IEA,2021),Chinaalsoviewshydrogenandfuelcellsaskeytostrategicenergyinnovation.ThecommitmentofChinatolow-carbondevelopmentandcleanairschemeshasprovidedacatalystforhydrogenandfuelcelldevelopment.R&Dactivitiesinthefieldareexpandingrapidly.In2018,nearly4,000fuelcellpatentswerefiledbyChineseapplicants,surpassingJapan,whichpreviouslyledthewayonsuchpatents.CarbonpeakandneutralityaspolicydriversInSeptember2020,ChinesepresidentXiJinpingtoldtheUnitedNationsGeneralAssemblythatcarbonemissionsinChinawouldpeakby2030,andthatthecountrywouldachievecarbonneutralityby2060.By2019,however,cleanenergyonlyaccountedforaroundaquarteroftotalprimaryenergyproductioninChina(NBSC,2020).Thereisaneedtoreducerelianceonfossilfuelsandincreasecleanenergy.Asanewenergymediumwithhighenergydensityandzeroemissions,hydrogen–andinparticularitsuseinfuelcells–hasattractedattentionatalllevelsofgovernment.Inaddition,hydrogencanalsoplayanimportantrolefordeepdecarbonizationinsomesectors,suchasironandsteel,chemicalrawmaterialsandhigh-gradeheatproduction,whererenewable-basedelectrificationisnotafeasiblealternativetofossilfuels.Inthefuture,whenalargeproportionofintermittentrenewableenergypowerisconnectedtothegridinChina,thesafeandstableoperationofthegridwillrequirelarge-scaleenergystorage,smart-gridtechnologyanddistributedrenewableenergynetworktechnology.Thisiswhyhydrogenisattractiveasarenewableenergystoragemediumacrossseasonsandregions.Accordingtosomeforecasts,hydrogenmayaccountformorethan10percentofthecountry’senergystructurein2050(ChinaEV100,2020).TransportReplacingfossilfuelswithelectricityandhydrogenintransportisessentialformeaningfuldecarbonization.In2020,theChinaSocietyofAutomotiveEngineersreleaseditsEnergySavingandNewEnergyVehicleTechnologyRoadmap2.0,inwhichitproposedtohave100,000FCEVsontheroadby2025and1millionby2035.Thecurrentfuelcellsystemandstacktechnologyiscapableofmeetingtechnicalvehicleapplicationrequirementsand,inChina,FCEVshavealsopassedthethresholdrequirementsforcommercialapplication,withseveralhundredtypesapprovedbytheMinistryofIndustryandInformationTechnologyby2020.Busesandtrucksusingfuelcellshaveenteredtheoperationaldemonstrationstage.Asthetechnologymaturesandcostsfall,hydrogenFCEVswillplayanimportantpartintransportinChina.IndustryTheuseofhydrogeninindustrycouldcontributegreatlytodecarbonization.Hydrogencanbeusedasacleanrawmaterialoracleanfuelinmanyindustries,particularlyironandsteel.In2019,Chinaaccountedformorethanhalfofglobalcrudesteelproduction(WorldSteelAssociation,2020).Replacingtraditionalcokewithdirectreductiontechnologybasedonhydrogentoproducepigironandcrudesteelcouldberevolutionaryintermsofdecarbonization.ConstructionIn2018,theproductionofkeyconstructionmaterials(includingironandsteel,andcementandglass),constructionitselfandoperationalenergyconsumptioninbuildingsaccountedforalmost46.5percentofnationalenergyconsumptioninChinaandabout51percentofthetotalnationalCO2emissions(CABEE,2020).Toachievecarbonneutrality,thereisaneedtoimproveenergyefficiencyanduserenewableenergyinbuildings.Hydrogenhasapotentiallyimportantroletoplayinthatregard.9AirqualityimprovementasadriverofhydrogendeploymentThedevelopmentanddeploymentofhydrogenandfuelscellsisbeingdrivennotonlybythedesiretoachievecarbonneutrality,butalsobytheneedtoimproveairquality.In2013,Chinalauncheditsso-called“blueskydefensewar,”inanunprecedentedefforttocombatairpollution.Airqualityhasimprovedsignificantlyasaresult.From2013to2020,theaverageconcentrationofparticlematter(PM)2.5inmonitoredcities2decreasedfrom72μg/m3to33μg/m3(MEE,2021;MEE,2014).InBeijing,thePM2.5concentrationdecreasedby57percentfrom89μg/m3in2013to38μg/m3in2020(BMEEB,2014;BMEEB,2021).However,airpollutioncontinuestoposeachallenge.In2020,theairqualityof135outof337Chinesecitiesatoraboveprefecturelevelstilldidnotmeetnationalairqualitystandards,withacompliancerateofabout60percent(MEE,2021).Vehicleemissionsareoftenthebiggestsourceofairpollutioninlargecities(figure3).Theyaccountfor45percentofairpollutioninBeijing(BMEEB,2018)and29percentinShanghai(SEMCandSMRIEP,2016).Thepressuretoreducevehicleemissionsishighandmanycitiesarepromotingtheuseofalternativeenergyvehiclestoimproveairquality.Similarly,vehiclesaremajorpollutersintermsofNOxandPM(figure4).NOxisagenerictermfornitrousoxidesthataretypicallyproducedbythereactionofoxygenandnitrogenincombustionengines,andwhichcontributetotheformationofsmogandacidrain.NOxisalsoasignificantgreenhousegas.PMreferstoamixtureofsolidparticlesandliquiddropletsfoundintheair,sometimeslargeordarkenoughtobevisibletothenakedeye.In2019,NOxemittedbymotorvehiclesaccountedforaround51percentofallNOxemissionsinChina(MEE,2020a).Heavy-dutyvehicles,especiallytrucks,accountedforthehighestproportionofNOxandPMemissions,reaching74percentand52percentrespectively(MEE,2020b).Electrificationofheavy,long-rangevehicleswithlargeloadcapacitiestoreducetheiremissionsisnotfeasible,becausethebatteriesrequiredwouldweightoomuch.Hydrogenfuelcellswithahighenergydensityandofferingalongrangecouldbeaviablesolution.2In2013,74citieswereincludedinthefirstphaseofthenewstandardformonitoring.After2013,338citiesatoraboveprefecturelevelweremonitored.Figure3.PM2.5sourcesinShanghai,2015(left)andBeijing,2018(right).Dustissoilandroaddust.Living-relatedsourcesarefromdomesticsourcessuchascooking,heating,painting,etc.29%14%29%13%15%45%12%3%12%12%16%ShanghaiBeijingMobileSources–29%Dust–13%IndustrialSources–29%CoalConsumption–14%Others–15%MobileSources–45%Dust–16%IndustrialSources–12%CoalConsumption–3%Living-relatedResources–12%Others–12%52%7%1%30%8%2%74%12%5%5%4%0.1%Heavytrucks–74.0%Mediumtruck–5.0%Lightbus–4.0%Lighttruck–4.5%Largebus–11.7%Mediumbus–0.1%Minibus–0%Heavytrucks–52.4%Mediumtruck–7.2%Mediumbus–0.8%Lighttruck–30.5%Largebus–7.6%Lightbus–1.5%Minibus–0%NOxPMFigure4.ShareofNOxandPMemissionsfromvarioustypesofvehicles,2019.29%14%29%13%15%45%12%3%12%12%16%ShanghaiBeijingMobileSources–29%Dust–13%IndustrialSources–29%CoalConsumption–14%Others–15%MobileSources–45%Dust–16%IndustrialSources–12%CoalConsumption–3%Living-relatedResources–12%Others–12%52%7%1%30%8%2%74%12%5%5%4%0.1%Heavytrucks–74.0%Mediumtruck–5.0%Lightbus–4.0%Lighttruck–4.5%Largebus–11.7%Mediumbus–0.1%Minibus–0%Heavytrucks–52.4%Mediumtruck–7.2%Mediumbus–0.8%Lighttruck–30.5%Largebus–7.6%Lightbus–1.5%Minibus–0%NOxPM10Patentperspective:asurgeoffuelcellinnovationinChinaThedevelopmentofthefuelcellindustryisinseparablefromR&Donrelatedtechnologies.Inrecentyears,andwiththesupportofaseriesoflargenationalprojects,innovationinfuelcelltechnologyhasmaderapidprogressinChina.LithiumbatteriesversusfuelcellsAtpresent,lithiumbatteriesandfuelcellsarethemaintechnicalapproachestoreplacingfossilfuelinvehicles.SincetheimplementationoftheTenCities,ThousandVehiclesproject,thedevelopmentoflithiumbatteryEVsinChinahasproceededrapidlyandtheyarealreadyincommercialproduction.Bytheendof2019,therewerearound3.8millionlithiumbatteryEVsinChina,account-ingforalmost1.5percentofthetotalnumberofmotorvehicles.Theirnumberrosebymorethan1millionayearfortwoconsecutiveyears(MEE,2020b).Presently,lithiumbattery-basedvehiclesarecheaperthanfuelcellvehicles(FCVs).However,wherelongdrivingrange,shortrefuelingtimeandhighsustainedpoweroutputarerequired,asinthecaseofmanyheavy-dutyvehicles,hydrogenfuelcells,withtheirhighenergydensity,arelikelytoofferimportantadvantagesanddevelopmentopportunities.Chinaisplanningtodeveloplithiumbatteriesandhydrogenfuelcells,butindifferentdirections.Lithiumbatteriesareseenasmoresuitableforpassengercars,whilehydrogenfuelcellsarepreferableforheavyvehiclessuchastrucks.Statisticsonpatentapplicationscanserveasaroughindicator,orproxy,ofthelevelofinnovationtakingplaceinagivenareaoftechnology.Thissectioncontainsabasicanalysisofrecentfuelcell-relatedpatentapplicationsinChina.ComparedwiththeUnitedStatesandJapan,patentapplicationsforfuelcellsstartedrelativelylateinChina(figure5).3By2018,however,thenumberofsuchapplicationsfromChineseapplicantshadsurpassedthatofJapan,andtheUnitedStatesandChinarankedfirstintheworld.Patentdataanalysesareinfluencedbyfactorsotherthanpurelevelsofinnovation,suchasgeneralnationalpatentingpoliciesandprocesses,andcorporateoruniversitypatentingstrategies.ThedatashowthatChinesefuelcellinnovation,afterarelativelyslowstart,isnowonaparwithorexceedingthatofotherfrontrunnercountriescarryingoutfuelcellinnovation.3TheanalysisbyBCAAisbasedonpatentdatafromthePatSnapdatabase.Itshowsthepatentfilingdataofapplicantsfromdifferentcountries.Forexample,“China”representsthenumberofpatentsfiledbybothChineselocalentitiesandindividuals(addresseslocatedinChina)inadefinedyear.Aspotentiallytheworld’slargestmarketforfuelcells,Chinahasattractedseveralmajorinternationalfuelcellindustryplayers.Ofthetop10fuelcell-relatedapplicants(patentsfiledwiththeChinaIPOffice)between1980and2019,sixwereforeigncompanies,includingthethreeJapanesefuelcellfrontrunnerenterprisesToyota,PanasonicandNissan(figure6),whichalsoshowstheimportanceoftheChinesemarket.Withreferencetofigure5,Chineseinnovatorshaveplayedanincreasinglyimportantroleinfuelcelldevelopmentinrecentyears.Alithiumbatteryelectriccar(photo:GettyImages/athimatongloom)Casestudy1:DalianInstituteofChemicalPhysicsTheDalianInstituteofChemicalPhysics,amemberoftheChineseAcademyofSciences,wasoneofthefirstresearchinstitutionstoworkonhydrogenenergyandfuelcellsinChina.IthasimplementedmanykeynationalR&Dprojectsonthesubject.AnalysisbyBCAAshowsthat,by2019,theInstitutehadfiledmorethan900patentapplicationsforkeymaterials,corecomponentsandstacksystemsforfuelcells.Astheleadingdomesticfuelcelltechnologypatentapplicantandthedrafterofmorethanhalfofthenationalfuelcellstandards,ithasbeenkeyindevelopingthefuelcellindustryinChina.TheInstituteisnowcarryingoutresearchonkeymaterialsandcomponentsofPEMFCs,fuelcellsystems,hydrogenstoragematerialsandrelatedsubjects(DICP,2021).11700060005000400030002000100001980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019JapanU.S.AChinaGermanyFranceUKCanadaSwitzerlandItalyRepublicofKoreaToyotaMotorCorporationGeneralMotorsCompanyHyundaiMotorCompanyPanasonicCorporationNissanMotorCo,Ltd.ShanghaiShenliTechnologyCo,SunrisePowerCo,Ltd.TsinghuaUniversityHondaMotorCo,LtdSamsungSDICo,LtdDalianInstituteofChemicalPhysics,ChineseAcademyofSciences020040060080010001200140016001800Figure5.Trendsoftop10patentapplicationcountriesforfuelcelltechnology,1980–2019.Figure6.Top10fuelcell-relatedpatentapplicantsinChina,1980–2019.FuelcellelectricbusesinChina(photo:GettyImages).12OverviewofhydrogenandfuelcelldevelopmentCurrentstatusAlthoughthedevelopmentofhydrogenandfuelcelltechnol-ogiesandapplicationshasincreasedrapidlyinrecentyearsworldwide,deploymentofFCEVsisstillinitsinfancy.Bytheendof2020,therewereapproximately34,500FCEVsontheroad,ofwhich8,500wereinChina,composedmainlyofbusesandlogisticsvehicles(IEA,2021).Bymid-2021,Chinahadbuiltover140hydrogenrefuelingstationsnationwide(Wang,2021).Atthenationalpolicylevel,developmentofthehydrogenindustryhasbeenaddressedinmorethan30nationaldevelopmentplansinChina.Of31provincialgovernmentsintheChinesemainland,413havepublishedspecifichydrogenorfuelcelldevelopmentplans(BCAA,2021).Withsuchbroadpolicysupportandgrowingindustrialinvestmentandinterest,thehydrogenandfuelcellsectorsareexpectedtodeveloprapidly.In2019,Chinaproduced22milliontonsofhydrogen,repre-sentingone-thirdoftheworld’stotalproductionandmakingChinatheworld’sbiggesthydrogenproducer(ChinaEconomic,2019).Onlyasmallportionofthathydrogenwasgreen,butabundantsourcesofrenewableenergy(hydro,windandsolar),especiallyinsouthwestandnorthwestChina,meanthatthepotentialforproducinggreenhydrogenfromelectrolysisbasedonrenewableenergyisconsiderable.InDecember2020,withaviewtobetterimplementingthevisionof“carbonpeakandcarbonneutrality,”theChinaIndustry-University-ResearchInstituteCollaborationAssociationreleaseditsStandardsandEvaluationofLow-CarbonCleanHydrogenandRenewableEnergyHydrogen,theworld’sfirstgreenhydrogenstandard.Init,limitsaresetforthecarbonemissionsresultingfromtheproductionofvarioustypesofhydrogen.Forexample,athresholdforcleanandrenewablehydrogenissetat4.9kgCO2e/kgH2.Examplesofhowthisenergyisusedtoproducehydrogenareprovidedbelow.4StatisticsinthisreportfortheChinesemainlanddonotincludeChineseHongKongandMacao.Casestudy2:LanzhouNewDistrictsolarhydrogenbasedmethanolproductionplantInthisdemonstrationproject,methanolisproducedwithhydrogenandCO2.Thehydrogenisproducedthroughsolar-poweredhydrogenelectrolysis,whiletheCO2iscollectedfromindustrialemissions.Consideredthefirstlarge-scalesolarhydrogenfueldemonstrationproject,itboasts19haofsolarpanels.AboutRMB140millionhasbeeninvestedintheproject,whichconsistsofasolarphotovoltaicpowergenerationunit,awaterelectroly-sishydrogenproductionunitandaCO2hydrogenationunit.Thelattersynthesizeshydrogenintomethanol.Thephotovoltaicpowerunitwillhaveacapacityof10MW,enoughtosupplypowerfortwoelectrolysisunitswithacombinedcapacityforproducinghydrogenof2,000m3/h.TheprojectisbasedontwokeytechnologiesdevelopedbythescientistLiCanoftheDalianInstituteofChemicalPhysics.Thefirstinnovationisalarge-scaleprocessofwateralkalineelectrolysishydrogenproduction,whichreducestheenergyrequiredto4.0–4.2kWh/m3ofhydrogen.Thatrepresentsanewworldrecordandgreatlyreducesgreenhydrogencosts.Thesecondkeyinnovationisthesolidsolutionbimetallicoxidecatalyst(ZnO-ZrO2),whichhydrogenatesCO2intomethanolwithhighselectivityandstability.Thecatalystattenuateslessthan2percentafterrunningfor3,000hours(DICP,2020).13NationalpolicyanalysisTheChineseGovernmentatalllevelshasinrecentyearspaidincreasingattentiontohydrogendevelopment,issuingsup-portingpoliciestodeveloprelatedindustriesandtechnologicalR&D.Theseincludenationalplanningandpoliciesonenergydevelopmentandtechnologicalinnovation.Ministriesandcommissionsthataredirectlyconcernedhavealsoreleasedspecificguidanceonhydrogenandfuelcellindustrialplanning.TheincorporationofhydrogenintoChinesepolicymakingcanbedividedintothreestages.Between2000and2014,Chinabegantoincludehydrogenandfuelcellsinitsdevelopmentplans.Thefocusonhydrogeninplanningwasthensteppedupinthenextfouryears.Inthatperiod,severalkeynationalplanningdocumentswerereleased.IntheStateCouncil’sStrategicActionPlanforEnergyDevelopmentforthePeriod2014–2020,hydrogenandfuelcellswerelistedasanationalstrategicpillarofenergyscienceandtechnologyinnovation.Since2019,Chinahasenteredanewstageofpromotingthehydrogenandfuelcellindustry.InitsNewEnergyVehicleIndustryDevelopmentPlanforthePeriod2021–2035,theMinistryofIndustryandInformationTechnologyemphasizestheneedtopromoteFCVsandbuildhydrogenationinfrastructure.UndertheDraftEnergyActof2020,issuedforcommentbytheNationalEnergyAdministration,hydrogenislistedasanenergycategoryatthenationallevelforthefirsttime.In2021,furtherrelevantpolicieswereissued.InFebruary,theGuidingOpinionsonGreenandLow-CarbonCircularDevelopmentproposedtostrengthentheinfrastructurefornew-energyvehicles,includingchargingandbatteryswappingforEVsandhydrogenrefuelingforFCEVs.InMarch,hydrogenenergyandenergystoragewerelistedasstrategicemergingindustriesinthe14thFive-YearPlanforNationalEconomicandSocialDevelopmentofthePeople’sRepublicofChinaandtheLong-RangeObjectivesThroughtheYear2035.Figure7providesatimelineofkeypolicies.TheLanzhoumethanolproductionplant(ChinaDaily,2020).14StandardsanalysisWell-definedstandardsforproducersandotherstakeholdersareaprerequisiteforrapidscalingup,andenablecommuni-cationandmainstreaming.InChina,therearenationalandgroupstandardsforhydrogenandfuelcells.Bymid-2021,morethan100standardshadbeenputinplacetoregulatetheproductionanduseofhydrogeninChina.Nationaltechnicalstandardsaredividedintoeightstandardsubsystems:hydrogenenergyfoundationandmanagement;hydrogenquality;hydrogensafety;hydrogenengineeringconstruction;hydrogenpreparationandpurification;hydrogenstorage-transportation-filling;hydrogenenergyapplication;andhydrogen-relateddetection.ByMarch2021therewere87nationalstandardsonhydrogenandfuelcells,ofwhich54(morethan60percent)relatetofuelcells(BCAA,2021).Nationalstandardshavebeenissuedwithsomefrequencysince2009,peakingin2017(figure9).Thatunderscorestheimportancethathasbeenattachedtodevelopingabasicframeworkforhydrogenuse.FigureGroupstandardsarevoluntarystandardsreleasedbyrelevantindustrialassociationsoralliances,whichcompaniesmaychoosetoadopt.Bytheendof2020,approximately50groupstandardsonhydrogenandfuelcellswereinplace(seeAnnex2).Casestudy3:NingxiagreenhydrogenplantOnApril20,2021,theNingxiagreenhydrogenplantofficiallystartedproductionintheNingdongEnergyandChemicalIndustryBase.ItispartoftheNingxianationalcomprehensivedemonstrationprojectofsolar-basedwaterelectrolysishydrogenproduction.MakinguseoftheabundantrenewableenergysourcesinNingxia,theprojectincludesa200,000kWphotovoltaicpowergenerationdeviceanda20,000m3/hwaterelectrolysishydrogenproductionunit.Whenfullyoperational,itwillreducecoalconsumptionby254,000tonsandCO2emissionsby445,000tonsperyear(PIA,2021).July2012Energy-savingandNew-EnergyVehiclesIndustryDevelopmentPlan(2020-2012)February2015Nationalkeyresearchanddevelopmentplan,keyspecialimplementationplanfornew-energyvehiclesJune2016ActionPlanforEnergyTechnologyRevolutionandInnovation(2030-201)November2017Energy-savingandnew-energyvehicletechnologyroadmapApril2020EnergyAct(draftforcomment)October2020DevelopmentPlanforaNew-EnergyAutomobileIndustry(2035-2021)November2014StrategicActionforEnergyDevelopmentPlan(2020-2014)May2016Outlineofnationalinnovation-drivendevelopmentstrategyDecember2016BlueBookonInfrastructureDevelopmentofHydrogenEnergyIndustryinChina(2016)March2019GreenIndustryGuidanceCatalogue(2019Edition)September2020NoticeondevelopingdemonstrationapplicationofFCVsMarch202114thFive-YearPlanforNationalEconomicandSocialDevelopmentofthePeople’sRepublicofChinaandtheLong-RangeObjectivesThroughtheYear2035Figure7.Keypoliciestimeline.15Figure9.Numberofnationalhydrogenorfuelcellstandardsbytheendof2020(BCAA,2021).19%11%62%8%HydrogenStorageandTransportationHydrogenInfrastructureHydrogenProductionFuelCell0510152025TimeNumber2005200620072008200920102011201220132014201520162017201820192020Figure8.Nationalhydrogenstandardsbytype(BCAA,2021).16OverviewoflocalpoliciesSince2010,12provincesandcitiesinChinahavebeenproactiveindevelopinghydrogenandfullcells,andthreekeyregionalhydrogenenergyindustrialclustershaveemerged:theBeijing-Tianjin-Hebei(BeijingandZhangjiakou),YangtzeRiverDelta(Shanghai)andPearlRiverDelta(Foshan)clusters.Recently,someprovincesincentralChina(Henan,HubeiandShanxi),easternChina(Shandong)andsouthwesternChina(ChongqingandSichuan)havejoinedtheeffortstopromotethehydrogenandfuelcellindustry.Ofthe31provincialgovernmentsintheChinesemainland,527haveaddressedhydrogenandfuelcellsintheirdevelopmentplansand13havereleasedspecificplansfortheirdevelopment(BCAA,2021).Inparticular,GuangdongandJiangsuprovinceshaveissuednumerouspolicies.Manyhydrogen-relatedpoliciesareintegratedintobroaderpolicies,suchasthoseonnew-energyvehicles,environmentalprotectionandenergypolicies.TheactivitiesincertainhydrogenpioneercitiesinChinaaredescribedinsomedetailinthenextchapter.InJanuary2009,theMinistryofScienceandTechnology,theMinistryofFinance,theDevelopmentandReformCommission,andtheMinistryofIndustryandInformationTechnologyjointlylaunchedtheDemonstration,PopularizationandApplicationProjectof1,000Energy-SavingandNew-EnergyVehiclesintheTenCities,ThousandVehiclesprogram.Itsaimwastodemonstratebattery-drivenEVsbylaunching1,000ofthemin10citieseachyearoverathree-yearperiod(MST,2009).TheprojectplayedanimportantroleinpopularizingEVsandlaidapopularfoundationforFCEVs.InSeptember2020,anFCEV5StatisticsinthisreportforChineseMainlanddonotincludeChineseHongKongandMacaoversionoftheprojectwaslaunchedundertheauspicesofthesameinstitutionsandtheNationalEnergyAdministration.Underthatprogram,interestedcitiescouldformacityclustertoapplytoparticipateintheprogramandbenefitfromfavor-ablepoliciesandincentivesfromtheChineseGovernmentforFCEVpromotion.Everycityclusterwillpromotemorethan1,000FCEVsbytheendofthedemonstrationperiodoffouryears(MF,2020).AlongsidetheprogramlaunchedbytheGovernment,someinternationalorganizationsalsoparticipatedintheFCEVpromotioneffortsbysettinguplocalpilotprograms.UNDPproject:AcceleratingtheDevelopmentandCommercializationofFuelCellVehiclesinChinaTheUnitedNationsDevelopmentProgrammeinChina(UNDPChina)wasestablishedin1979.TodayitiscooperatingwiththeChineseGovernmenttopromotethecountry’sdevelopmentaswellastheSustainableDevelopmentGoals(SDGs).WithsupportfromtheGlobalEnvironmentFacility(GEF),UNDPChinaandtheMinistryofScienceandTechnology(MoST)havesince2003jointlyimplementedthreephasesofdemonstrationprojectstopromotehydrogenandFCVsinChina.Pilotactivitieshavebeenconductedinsevencities(Beijing,Shanghai,Zhengzhou,Foshan,Yancheng,ChangshuandZhangjiakou)tooperateover3,200FCVs,acceleratetheconstructionofhydrogeninfra-structure,andsupportthenationalandlocalpolicymaking.Since2016,thoseactivitieshavealreadyreducedcarbonemissions,with230,261tonsCO2eq(UNDP,2021),aimingtofast-trackChina’sdecarbonizationthroughtechnologicalinnovationinthetransportandenergysectors.MainhydrogenenergyindustrialclustersinChina.TypeRegionRepresentativeProvincesandCitiesHydrogenandFuelCellIndustrialClustersBeijing-Tainjin-HebeiIndustrialClusterBeijing,Tianjin,ZhangjiakouYangtzeRiverDeltaIndustrialClusterShanghai,Suzhou,Jiaxing,RugaoPearlRiverDeltaIndustrialClusterGuangzhou,Shenzhen,FoshanRegionswithStrongInteresttoPromoteHydrogenandFuelCellCheng-YuRegionChongqing,ChengduMiddleofChinaHenanProvince,HubeiProvince,andShanxiProvinceShandongPeninsulaShandongProvince17PioneeringcitiesConsiderableprogresshasbeenmadeinBeijing-Zhangjiakou,ShanghaiandFoshan,whichrepresentthethreeregionalhydrogenenergyindustrialclusters.InAugust2021,Beijing,ShanghaiandGuangdongwerelistedasthefirstroundofleadinglocalgovernmentsfortheestablishmentofFCEVdemonstrationandapplicationcityclusters(MF,2021).Beijing-Zhangjiakou(Beijing-Tianjin-Hebeiindustrialcluster)CityoverviewLocationTheBeijing-ZhangjiakouareaisinthenorthernmostpartoftheNorthChinaPlain,whichisthecoreoftheBeijing-Tianjin-Hebei(BohaiRim)economiccircle.Population(2019)25.95millionGDP(2019)RMB3.65trillionArea(2019)53,200km2Numberofhydrogenrefuelingstationsunderconstructionorcompleted(by2020)8NumberofFCVspromoted(by2020)684Numberofpoliciesissued(byMarch2021)9SampleinstitutionsTsinghuaUniversity,PekingUniversity,BeijingInstituteofTechnology,TechnicalInstituteofPhysicsandChemistryofCAS,BeijingAerospacePropulsionInstituteSource:ZMBS(2020),BCAA(2021).In2019,theBeijingHydrogenFuelCellVehicleIndustryDevelopmentPlan(2020–2025)wasreleased.TheaimistoestablishahydrogenenergysupplychainaroundBeijingincooperationwithZhangjiakou,TangshanandothercitiesinHebeiProvince.Itisexpectedthatthedeploymentofhydrogen,especiallyinZhangjiakou,willbeacceleratedinviewofthe2022WinterOlympics,whichwillbehostedintheregion.AnenterpriseclusterestablishedinthecityregionincludescompaniessuchasSinoHytec,PetroChina,Sinopec,YutongBusandKerongEnvironment,whichcoverthewholehydrogenindustrialchain.Inaddition,theBeijing-Zhangjiakouareaisabaseofleadinghydrogenandfuelcellresearchinstitutions,suchasTsinghuaUniversityandBeijingInstituteofTechnology.EnergyconsumptionintheBeijing-Tianjin-Hebeiregionisdominatedbyfossilfuels,especiallycoal.Thereisthereforesignificantdemandforcleanenergyinordertoreachcarbonneutralityby2060.Zhangjiakouhasabundantwindandsolarpowerpotential,whichcanbeusedforelectrolysisofwatertoproducehydrogen.18SelectedcasestudiesHydrogenenergyindustrydemonstration,WinterOlympicsIn2022,BeijingandZhangjiakouwilljointlyhostthe24thWinterOlympicGames.Thetwogovernmentsplantousetheoccasiontodemonstrateandpromotethehydrogenenergyindustry.Hydrogenenergywillbeusedinvariousways,includingthedeploymentofsome2,000FCEVs,andtheOlympictorchwillbefueledbyhydrogen.Hydrogenproductioncapacitywillbeincreasedto34tonsperday.Localcountyanddistrictgovernments,aswellasmunicipaldepartments,willprovidesupportbyallocatinglandandcoveringconstructioncostsforhydrogenrefuelingstations.TheZhangjiakouMunicipalitywillalsoprovidecheaprenewableenergytosupporthydrogenproductionforfiveyears(ZhangjiakouMun.,2020).Thefirstfuelcellcompanyonthe“starmarket”oftheShanghaiStockExchangeSinoHytec,establishedin2012,isahigh-techenterprisefocusingonR&DandtheindustrializationofhydrogenfuelcelltechnologybasedoncooperationwitharesearchteamatTsinghuaUniversity.Havingsecuredintellectualproperty(IP)rights,SinoHytechastakentheleadindevelopingcoreenginesystemandfuelcellstacktechnologies.Itsproductsaremainlyusedincommercialvehicles,suchaspassengercarsandlogisticsvehicles,usingahydrogenfuelcellengineanditssupportingDC/DCcomponent,vehiclecontroller,hydrogensystemandsoon(SinoHytec,2021).InAugust2020,SinoHytecbecamethefirstfuelcellcompanytobelistedontheStarMarketoftheShanghaiStockExchange.ItstotalmarketvalueinMarch2021exceededRMB16billion(StockExchange:688339Yihuatong-U).The45MPahigh-pressurehydrogenstoragefacilitiesofZhangjiakouWangshanHydrogenProductionandHydrogenationStation(photo:HuiZhao,HypowerHydrogenTechnologyCo.,Ltd,2020).19Shanghai(YangtzeRiverDeltaindustrialcluster)CityoverviewLocationShanghailiesatthemouthoftheYangtzeRiverineasternChina,borderingtheEastChinaSeaandconnectingJiangsuandZhejiangprovincestothenorthandwestPopulation(2019)24.3millionGDP(2019)RMB3815.6billionArea(2019)6,340km2Numberofhydrogenrefuelingstationsunderconstructionorcompleted(by2020)10NumberofFCVspromoted(by2020)Morethan1,000Numberofpoliciesissued(byMarch2021)13SampleinstitutionsTongjiUniversity,ShanghaiJiaotongUniversity,ShanghaiAdvancedResearchInstituteofChineseAcademyofSciences,ShanghaiYangtzeRiverDeltaHydrogenEnergyResearchInstitute,ShanghaiElectricVehiclePublicDataCollecting,MonitoringandResearchCenterInChina,FCEVtechnologywasfirstdevelopedinShanghai,withitsstrongindustrialbase.BytheendofMarch2021,13developmentplansforhydrogenandfuelcellshadbeenlaunchedinShanghaianditsJiadingandQingpudistricts,alongwithseverallocalstandardsonhydrogen,storagecylindersanddatacollection.Shanghaiistakingtheleadinhydrogeninfrastructureconstruction,withninecompletedhydrogenationstations,mainlylocatedintheJiading,FengxianandBaoshandistricts.LedbySAICGroup,LindeGroupandShanghaiSUNWISE,thecityhascreatedafullhydrogenindustrialchain.SAIGGroupwasthefirstdomesticautomobilefirmcertifiedtoproducecommercialfuelcellpassengervehiclesinChina.BackedbyTongjiandShanghaiJiaotonguniversities,thecityhasstrongpotentialforhydrogenandfuelcellinnovation.RelatedcasestudyJiadinghydrogenenergyportTheJiadinghydrogenenergyportislocatedinthecoreareaofAntingShanghaiInternationalAutomobileCity,anditisanimportantpartofthecity’sglobalscienceandtechnologyinnovationcenter.Theenergyportboastsacomprehensiveecosystem,includinghydrogenenergy,afuelcellpowersystemplatform,andFCVcapacityandinfrastructuretofosterdevelopmentofthehydrogenindustry.AtargetvalueinexcessofRMB100billionby2025hasbeensetfortheport’sannualoutput(JiadingDistrict,2018).20Foshan(PearlRiverDeltaindustrialcluster)CityoverviewLocationFoshanislocatedinthecentralpartofGuangdongProvinceandthehinterlandofthePearlRiverDelta,adjacenttoHongKongandMacao.TogetherwithGuangzhou,FoshanconstitutestheGuangzhou-FoshanMetropolisCircle.Population(2019)8.2millionGDP(2019)RMB1trillionArea(2019)3,797km2Numberofhydrogenrefuelingstationsunderconstructionorcompleted(by2020)23NumberofFCVspromoted(by2020)1,457Numberofpoliciesissued(byMarch2021)10SampleinstitutionsFoshanXianhuLaboratory,JiHuaLaboratory,FoshanNanhaiDistrictSouthChinaHydrogenSafetyPromotionCenter,FoshanInstituteofEnvironmentandEnergyTechnology,FoshanGreenDevelopmentInnovationResearchInstituteSource:FMBS(2020).Foshanisahydrogenpioneercity,especiallyforthelarge-scalecommercialdeploymentofhydrogen-fueledvehicles.Itwasthefirstcitytoputahydrogendevelopmentplaninplace,andthecitygovernmentprovidesstrongincentives.InFoshan,ahigh-levelleadershipgroupdedicatedtohydrogenandfuelcellpromotionhasbeencreated.Thegroupischairedbythemayorofthecity,withgroupmemberscomprisingdirectorsofrelevantagenciessuchastheDevelopmentandReformBureau,theHousingandUrban-RuralDevelopmentBureauandtheIndustryandInformationTechnologyBureau.Foshanhasthreemajorhydrogenenergyindustrialbasesandhasbroughttogethermorethan90hydrogen-relatedenterprisesandscienceandtechnologyinnovationplatforms.21RelatedcasestudiesHydrogentraminGaomingDistrict,FoshanCity(GuangzhouDaily,2020).HydrogenValleyinXianhu,FoshanTheHydrogenValleyislocatedintheXianhuarea,NanhaiDistrict,Foshan,withaplannedareaof47.3km2(NPGF,2020).Relyingontheexistingautomobileindustryfounda-tion,thevalleyfocusesontechnologicalinnovationinandthepromotionanddeploymentofnew-energyvehicles,inparticularFCEVs.ItishopedthattheValleywillbecomea“SiliconValleyofhydrogen,”withafullhydrogenindustrialchainincludingstoragematerials,hydrogenproductionequipment,hydrogenproductionandfuelcells.ThefirsthydrogentraminChinaOnNovember29,2019,thefirstcommercialhydrogentraminChinawaslaunchedinGaomingDistrict,FoshanCity.Thedemonstrationtramlinehasaplannedtotallengthof17.4kmand20stations.Thefirstphase,whichis6.6kmlongandhas10stops,startsatCangjiangRoadandZhongshanRoad,andendsatZhihuLakeinXijiangNewTown.InDecember2020,constructionforaseconddemonstrationtramstartedinNanhaiDistrict,Foshan(Gongetal.,2021).22ConclusionHydrogenisgainingmomentuminmanyindustrializedcountries,andseveralmajorhydrogentechnologiesarebeingdeveloped.Thepublicandprivatesectorsinsomecountriesseemuchpotentialinhydrogenandaredevelopingpoliciesandstan-dards,improvingtechnologiesandcomingclosertoscalingupsolutions.However,itisalsoclearthathydrogenisafieldthatisstillunderdevelopment;therearemanyobstaclestoovercometomakeiteconomicallyfeasible,especiallyinthecaseofgreenhydrogen.Whethergreenhydrogenwillbeabletocompetewithhydrogenproducedusingfossilfuelintheforeseeablefuturewithoutstrongsupportmeasuresisnotknown.Currentuseofhydrogenisalmostentirelybasedonfossilfuels,especiallynaturalgas.Hydrogentodayisthereforenotagreenenergysource.China,theworld’slargestmarketforEVs,seesimportantadvantagesinhydrogenandisrapidlypreparingtousehydrogentomeetitscommitmenttopeakcarbonemissionsby2030andcarbonneutralityby2060.Thatconcernsnotonlythetransportsector,withtheemphasisonheavy-dutyandlong-haulvehicles,butalsoindustry,constructionandtheenergysector.Thedegreeofinnovation,asmeasuredbypatentapplications,showsthatChinahascaughtupwithotherhydrogeninnovationfrontrunnercountriessuchasGermany,Japan,theRepublicofKoreaandtheUnitedStates.Numeroussupportingpoliciesandstandardshavebeenissuedandanarrayofsuccessfuldemonstrationprojectslaunched.Manyofthelatterarelocatedinestablishedindustrialclusterareas,wherelarge-scaleresearch,innovationanddeploymentinfrastructureandfacilitiesalreadyexist,whichcanboosttheprocessofdeliveringhydrogen-basedgoodsandservices.Itisprobablethat,forexample,hydrogenwillnotcompetewithbattery-drivenEVsinsmallpassengervehiclesorlight,short-haultransport.However,hydrogenisdefinitelyanoptionforheavy-dutyandlong-haultransport(trains,trucksandbuses),aviationandshipping(bothmostlikelybasedonammonia),processesrequiringveryhightemperatures(suchasinthesteel,cementandglassindustries),fertilizer(forwhichhydrogenisalmostirreplaceable),mixingintodomesticgasgrids(toavoidlarge-scaleandcomplexreplacementofexistingboilerswith,forinstance,heatpumps),andforthestorageofintermittentrenewableenergy.Thesearenotnicheareas,butmajorsourcesofgreenhousegasemissions.Importantfactorsfavorhydrogen.Thecontinuousdropinthepriceofrenewableenergywillalsolowerthecostofhydrogenelectrolysis.Researchisbeingconductedonnewhydrolyzertechnologywiththeaimofincreasingefficiencyandloweringcosts.Lastly,economiesofscalemakeitlikelythatgreenhydrogenwillfollowthepathofwindandsolarpower,withdramaticcostreductionsasaresultofinnovationandmass-production.Theroadtoscalingupandmainstreaminghydrogenintheworldeconomymaystillseemlongandstrewnwithtechnicalandeconomicobstacles,buttheadvantagesofhydrogenasapotentiallyclean,energy-dense,versatile,climate-friendlyandunlimitedenergymediumaresoappealingthatthereisreasontobeoptimisticabouthydrogen’sfutureroleinthetransitiontowardsagreeneconomy.23Annex1–KeyhydrogenandfuelcellpoliciesinChinaDateDepartmentPolicytitle2001MinistryofScienceandTechnologySpecialProjectofNational863Program2006StateCouncilOutlineofNationalMedium-andLong-TermScienceandTechnologyDevelopmentPlan(2006–2020)2009MinistryofFinance,MinistryofScienceandTechnologyInterimMeasuresfortheAdministrationofFinancialSubsidyFundsforDemonstrationandPromotionofEnergy-SavingandNewEnergyVehicles2010StateCouncilDecisiononAcceleratingtheCultivationandDevelopmentofStrategicEmergingIndustries2011TheNationalPeople’sCongressVehicleandVesselTaxActofthePeople’sRepublicofChinaJune2011DevelopmentandReformCommission,MinistryofScienceandTechnology,MinistryofIndustryandInformationTechnology,MinistryofCommerceandIntellectualPropertyOfficeGuidetoKeyAreasofHigh-TechIndustrializationwithPriorityDevelopmentatPresent(2011)March2011DevelopmentandReformCommissionGuidanceCatalogueofIndustrialStructureAdjustment(2011edition)July2012StateCouncilEnergy-SavingandNewEnergyAutomobileIndustryDevelopmentPlan(2012–2020)November2014StateCouncilEnergyDevelopmentStrategicActionPlan(2014–2020)2014MinistryofFinance,MinistryofScienceandTechnology,MinistryofIndustryandInformationTechnology,DevelopmentandReformCommissionNoticeonRewardforConstructionofChargingFacilitiesforNewEnergyVehicles2015MinistryofFinance,MinistryofScienceandTechnology,MinistryofIndustryandInformationTechnology,DevelopmentandReformCommissionNoticeontheFinancialSupportPolicyforthePromotionandApplicationofNewEnergyVehicles(2016–2020)2015MinistryofScienceandTechnologyNationalKeyR&DSpecialImplementationPlanforNewEnergyVehicles(draftforcomment)2015MinistryofTransportImplementationOpinionsonAcceleratingthePromotionandApplicationofNewEnergyVehiclesintheTransportationIndustryMay2015MinistryofIndustryandInformationTechnologyMadeinChina2025June2016DevelopmentandReformCommission,EnergyBureauActionPlanforEnergyTechnologyRevolutionandInnovation(2016–2030)June2016DevelopmentandReformCommission,EnergyBureauRoadmapforKeyInnovationActionsoftheEnergyTechnologyRevolutionDecember2016StandardizationInstituteBlueBookonInfrastructureDevelopmentoftheHydrogenEnergyIndustryinChina(20162016CPCCentralCommitteeandStateCouncilOutlineoftheNationalInnovation-DrivenDevelopmentStrategy2016StateCouncilThe13thFive-YearNationalStrategicEmergingIndustryDevelopmentPlanNovember2017CommissionedbytheMinistryofIndustryandInformationTechnologyandcompiledbyChinaSocietyofAutomotiveEngineersEnergy-SavingandNewEnergyVehicleTechnologyRoadmap2017MinistryofIndustryandInformationTechnology,DevelopmentandReformCommission,MinistryofScienceandTechnologyMedium-andLong-TermAutomobileIndustryDevelopmentPlan2017MinistryofScienceandTechnology,MinistryofTransportSpecialPlanforScienceandTechnologyInnovationinTransportationDuringthe13thFive-YearPlan2018MinistryofFinance,MinistryofIndustryandInformationTechnology,MinistryofScienceandTechnology,DevelopmentandReformCommissionNoticeonAdjustingandPerfectingtheFinancialSubsidyPolicyforthePromotionandDeploymentofNewEnergyVehiclesNovember2019DevelopmentandReformCommission,MinistryofIndustryandInformationTechnology,etc.ImplementationOpinionsonPromotingtheDeepIntegrationandDevelopmentofAdvancedManufacturingandModernServiceIndustriesMarch2019StateCouncilGovernmentWorkReportof2019October2019DevelopmentandReformCommissionGuidanceCatalogueforIndustrialStructureAdjustment(2019edition)2019DevelopmentandReformCommission,MinistryofIndustryandInformationTechnology,MinistryofNaturalResources,MinistryofEcologyandEnvironment,etc.GreenIndustryGuidanceCatalogue(2019edition)2019MinistryofEcologyandEnvironment,DevelopmentandReformCommission,MinistryofIndustryandInformationTechnology,MinistryofPublicSecurity,etc.ActionPlanforTacklingtheDieselTruckPollutionApril2020EnergyBureauEnergyActofthePeople’sRepublicofChina(draftforcomment)April2020MinistryofFinance,MinistryofIndustryandInformationTechnology,MinistryofScienceandTechnology,DevelopmentandReformCommissionNoticeonImprovingtheFinancialSubsidyPolicyforthePromotionandDeploymentofNewEnergyVehicles24DateDepartmentPolicytitleJune2020EnergyBureauGuidingOpinionsonEnergyWorkin2020September2020MinistryofFinance,MinistryofIndustryandInformationTechnology,MinistryofScienceandTechnology,DevelopmentandReformCommission,EnergyBureauNoticeonDemonstrationApplicationofFuelCellVehiclesOctober2020MinistryofIndustryandInformationTechnologyNewEnergyVehicleIndustryDevelopmentPlan(2021–2035)October2020MinistryofIndustryandInformationTechnology,ChinaSocietyofAutomotiveEngineeringEnergy-SavingandNewEnergyVehicleTechnologyRoadmap2.0December2020DevelopmentandReformCommissionoftheMinistryofFinance,MinistryofIndustryandInformationTechnology,MinistryofScienceandTechnologyNoticeonFurtherImprovingtheFinancialSubsidyPolicyforthePromotionandDeploymentofNewEnergyVehiclesFebruary2021StateCouncilGuidanceonAcceleratingtheEstablishmentandImprovementoftheGreenLowCarbonCircularDevelopmentEconomicSystem25Annex2–HydrogenandfuelcellgroupstandardsinChinaNumberNameofstandardT/DLSHXH003—2020SafetyManagementRequirementsforOn-SiteOperationofHydrogenRefuelingStationsT/DLSHXH002—2020OperationServiceSpecificationsforHydrogenRefuelingStationsT/DLSHXH001—2020GuidelinesforTechnicalAcceptanceofHydrogenRefuelingStations.T/GDASE0017—2020PeriodicInspectionandEvaluationofFullyWrappedCarbonFiberReinforcedCylinderswithanAluminumLinerfortheOn-BoardStorageofCompressedHydrogenasFuelforLandVehiclesT/EPIAJL1—2018TechnicalSpecificationforDetectingHydrogenContentofInternalCoolingWaterTankandHydrogenLeakageofInternalCoolingWaterSysteminWater-CooledGeneratorsT/GHDQ47—2019TechnicalConditionsofFuelCellStackLifeTestatSub-ZeroEnvironmentforFuelCellVehiclesinFrigidZonesT/GHDQ38—2019TestMethodsofOnboardHydrogenSystemofFuelCellElectricVehiclesinFrigidZonesT/GHDQ37—2019TechnicalConditionsofOn-BoardHydrogenSystemsforFuelCellElectricVehiclesinFrigidZonesT/GHDQ28—2018PerformanceRequirementsandTestMethodsforNickel-MetalHydrideBatteriesinElectricVehiclesinFrigidZonesT/GHDQ46—2019PerformanceRequirementsandTestMethodsforFuelCellSystemsinElectricVehiclesinFrigidZonesT/GHDQ45—2019GeneralTechnicalConditionsforAutomotiveFuelCellStackSub-ZeroCharacterinFrigidZonesT/GHDQ44—2019GeneralTechnicalConditionsforAutomotiveProtonExchangeMembraneFuelCellStackSubzeroStartupinFrigidZonesT/GHDQ39—2019TechnicalConditionsforVehicle-BasedFuelCellEngineCold-StartinFrigidZonesT/GHDQ36—2019ComprehensiveEvaluationIndexonthePerformanceofFuelCellElectricPassengerCarsinFrigidZonesT/GHDQ35—2019TechnicalConditionsforFuelCellElectricPassengerCarsinFrigidZonesT/SDAS188—2020GeneralTechnicalSpecificationsforHydrogenFuelCellTramsT/SDAS185—2020FuelCellRollingStock–SafetyRequirementsforOn-BoardHydrogenSystemsT/SDAS184—2020FuelCellRollingStock–TechnicalSpecificationsforOn-BoardHydrogenSystemsT/SDAS182—2020FuelCellRollingStock–TechnicalSpecificationsforOn-BoardHydrogenSystemsT/SDAS187—2020FuelCellRollingStock–PerformanceTestMethodsforFuelCellStacksT/SDAS186—2020FuelCellRollingStock–TechnicalSpecificationsforFuelCellCoolingSystemsT/SDAS183—2020FuelCellRollingStock–SafetyRequirementsT/SZAS8—2019SpecificationsofMethanolReformingandHydrogenGenerationPowerSystemsforVehiclesT/ZZB1479—2019DetachableMulti-PointFlexibleArmoredThermocoupleforHydrogenationUnitsT/CAB0084—2021TechnicalSpecificationsforSmall-SizedProtonExchangeMembraneWaterElectrolysisSystemsforHydrogenProductionT/CAB0078—2020StandardandEvaluationofLow-CarbonHydrogen,CleanHydrogenandRenewableHydrogenT/CAB0064—2020TechnicalSpecificationsforRemoteServiceandManagementInformationSystemforHydrogenRefuelingStationsT/CAB1038—2020DeterminationofHydrogenStorageDensityofHydrogenatedLiquidOrganicHydrogenCarrier–WaterDisplacementMethodT/CEEIA265-2017TechnicalSpecificationsforFuelCellFuelSystemsinUnmannedAerialVehicleT/CEEIA264-2017TechnicalSpecificationsforFuelCellPowerSystemsinUnmannedAerialVehicleT/CCGA40002—2019ApplicationManagementSpecificationfortheElectronicLabelforHydrogenEnergyVehicleCylindersT/CCGA40001—2019LiquidHydrogenT/CATSI02007—2020FullyWrappedCarbonFiberReinforcedCylinderwithaPlasticLinerfortheOn-BoardStorageofCompressedHydrogenforLandVehiclesT/CATSI05003—2020SpecialTechnicalRequirementsforHydrogenStoragePressureVesselsUsedinHydrogenRefuelingStationsT/CSTE0017—2020OperationSpecificationsforHydrogenFuelCellLogisticsVansT/CSTE0016—2020RegulationsforOperationManagementofHydrogenFuelCellBusesT/CSTE0015—2020RegulationsforOperationManagementofHydrogenFuelCellBusesT/CSTE0007—2020DeterminationofTraceCarbonMonoxideinHydrogenFuel–theMethodofMid-InfraredLaserSpectroscopyforPEMFCT/CSTE0006—2020StandardFormatoftheSafetyAssessmentReportforHydrogenRefuelingStationsT/CSTE0005—2020TechnicalSpecificationsforHydrogenProductionfromCokeOvenGasT/CSTE0012—2019TechnicalRequirementsforControlSystemsofHydrogenRefuelingStationsT/CSTE0077—2020TechnicalRequirementsforVideoSecurityMonitoringSystemsatHydrogenRefuelingStationsT/CSTE0076—2020CentrifugalAirCompressorforVehicleHydrogenFuelCellsT/CECA-G0015—2017FuelSpecificationsforProtonExchangeMembraneFuelCellVehicles—HydrogenT/CSAE123—2019FuelCellElectricVehicles–TestMethodsandSafetyRequirementsforHydrogenLeakageandEmissionsinConfinedSpaceT/CSAE122—2019TestMethodsforCold-StartPerformancesofFuelCellElectricVehiclesinSub-ZeroTemperaturesT/CAAMTB21—2020TechnicalRequirementsforVibrationTestsofOn-BoardHydrogenSupplySystemsinFuelCellElectricVehiclesT/CAAMTB14—2020DC/DCConverterforFuelCellElectricVehiclesT/CAAMTB13—2020MethodsforAirCompressorsinFuelCellVehiclesT/CAAMTB12—2020TestMethodsforMembraneElectrodeAssembliesinPEMFC26ReferencesAlstom(2021).TrialrunsofAlstom’shydrogentrainintheNetherlandsdeemedofficiallysuccessful.Alstom.[online]available:https://www.alstom.com/press-releases-news/2020/9/trial-runs-alstoms-hy-drogen-train-netherlands-deemed-officially[accessedMarch2021].Andersen,K.B.(2021).HaldorTopsøevilerobreglobaltbrintmarked–FINANS.Finans.[online]avail-able:https://finans.dk/erhverv/ECE12784381/hal-dor-topsoee-vil-erobre-globalt-brintmarked/?ctx-ref=ext[accessedMarch2021].Barnard,M.(2021).Carboncapturewillmakefossil-sourcedhydrogen2.5–9×moreexpensive.CleanTechnica.[online]available:https://cleantech-nica.com/2021/03/23/carbon-capture-will-make-fossil-sourced-hydrogen-2-5-9x-more-expensive/[accessedMarch2021].BCAA(2021).BCAAFuelCellDataAnalysis.Beijing:BluetechCleanAirAlliance,unpublished.Bloomberg(2021).Explorethefirst-everhydrogeneconomyrankingsystem.Bloomberg.[online]available:https://sponsored.bloomberg.com/news/sponsors/features/hyundai/explore-the-global-hy-drogen-economy-today/?adv=16713&prx_t=aXwFA-BAY_At_sQA[accessedFebruary2021].BMBF(2021).BMBFbringtWasserstoff-LeitprojekteaufdenWeg.BundesministeriumfürBildungundForschung.[online]available:https://www.bmbf.de/de/bmbf-bringt-wasserstoff-leitprojek-te-auf-den-weg-13530.html[accessedMarch2021].BMEEB(2014).BulletinontheEnvironmentalStatusofBeijingin2013.Beijing:BeijingMunicipalEcologyandEnvironmentBureau.[online]available:http://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/zfxxgk43/fdzdgknr2/xwfb/607213/index.html[accessedNovember2021].BMEEB(2018).TheLatestScientificResearchResultsofTheNewRoundofPM2.5SourceAnalysisinBeijing.Beijing:BeijingMunicipalEcologyandEnvironmentBureau.[online]available:http://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/zfxx-gk43/fdzdgknr2/xwfb/832588/index.html[accessedNovember2021].BMEEB(2021).BeijingEcologyandEnvironment.Beijing:BeijingMunicipalEcologyandEnvironmentBureau.[online]available:http://sthjj.beijing.gov.cn/bjhrb/resource/cms/arti-cle/1718882/10985106/2021051214515686015.pdf[accessedNovember2021].Burgess,M.(2021).Newhydrogen-basedfueldevelopedforsmallvehicles.H2View.[online]available:https://www.h2-view.com/story/new-hy-drogen-based-fuel-developed-for-small-vehicles/[accessedMarch2021].CABEE(2020).ChinaBuildingEnergyConsumptionResearchReport(2020).ChinaAssociationofBuildingEnergyEfficiency,CommitteeofBuildingEnergyData.[online]available:http://adminht.cabee.org/upload/file/20201231/1609385858606010.pdf[accessedNovember2021].Casey,T.(2021).Yarakickstartsgreenammoniaindustrywithgreenhydrogen.CleanTechnica.[online]available:https://cleantechnica.com/2021/03/01/yara-kickstarts-green-ammonia-indus-try-with-green-hydrogen/[accessedMarch2021].ChinaEconomic(2019).Chinaproducesabout22milliontonsofhydrogeneveryyear,accountingforone-thirdoftheworld’shydrogenproduction.ChinaEconomic.[online]available:http://www.ce.cn/cysc/ny/gdxw/201907/08/t20190708_32548351.shtml[accessedMay2021].ChinaEV100(2020).ChinaHydrogenIndustryDevelopmentReport2020(no.104).Beijing.ChinaHydrogenAlliance(2019).WhitePaperonHydrogenEnergyandFuelCellIndustryinChina.Beijing.ChinaDaily(2020).Theworld’sfirstlarge-scalesolarfuelsynthesisdemonstrationprojectsuc-cessfullyrunstoproduce“liquidsunshine.”ChinaDaily.[online]available:http://ex.chinadaily.com.cn/exchange/partners/82/rss/channel/cn/columns/j3u3t6/stories/WS5e229de5a3107bb6b579aa6d.html[accessedMay2021].CORDIS(2020).BIONICO:Apilotplantforturningbiomassdirectlyintohydrogen.Horizon2020,EUPublicationsOffice.[online]available:https://cordis.europa.eu/article/id/394984-bionico-a-pi-lot-plant-for-turning-biomass-directly-into-hydrogen[accessedFebruary2021].DICP(2020).Theworld’sfirstlarge-scaledemon-strationprojectofsolarfuelsynthesiswassuccess-fullytested.DalianInstituteofChemicalPhysics.ChineseAcademyofSciences.[online]available:http://www.dicp.cas.cn/xwdt/ttxw/202001/t20200116_5488931.html[accessedNovember2021].DICP(2021).DalianInstituteofChemicalPhysics.ChineseAcademyofSciences.Divisionofhydrogenenergyandadvancedmaterials.[online]available:http://www.dicp.cas.cn/yjxt_1/dnl03/gkjj/[accessedMay2021].Engie(2020).Promisinghydrogeninnovationsaroundtheworld.ENGIEInnovation.[online]available:http://innovation.engie.com/en/news/news/new-energies/Hydrogen-innovation-global-breakthrough/13681[accessedFebruary2021].Farmer,M.(2020).Whatcolourisyourhydro-gen?Apowertechnologyjargon-buster.PowerTechnology.[online]available:https://www.power-technology.com/features/hydrogen-pow-er-blue-green-grey-brown-extraction-produc-tion-colour-renewable-energy-storage/[accessedMarch2021].FMBS(2020).FoshanStatisticalYearbook2020.Foshan:FoshanMunicipalBureauStatistics.[online]available:http://www.foshan.gov.cn/attachment/0/153/153028/4654170.zip[accessedNovember2021].GlobalEnergyPrize(2021).Chileholdsworld’sfirstnationalhydrogentender.TheGlobalEnergyAssociation.[online]available:https://globalener-gyprize.org/en/2021/09/23/chile-holds-worlds-first-national-hydrogen-tender/[accessedOctober2021].Godske,B.(2021a).Tysklandinvesterer5,2mia.kroneritrebrint-projekter.Ing.TeknologiensMedihus.[online]available:https://ing.dk/artikel/tyskland-investerer-52-mia-kroner-tre-brint-projek-ter-242870[accessedMarch2021].Godske,B.(2021b).Verdens(foreløbig)størsteelek-trolyseanlægbyggesiTyskland.Ing.TeknologiensMedihus.[online]available:https://ing.dk/artikel/verdens-foreloebig-stoerste-elektrolyseanlaeg-byg-ges-tyskland-243636[accessedMarch2021].Gong,Q.,N.Wan,Q.Du,L.Li,H.ChenandJ.Wang(2021).ResearchonIntelligentTransportationOperationofHydrogenFuelCellLightRail–TakingtheFirstCommercialHydrogenTraminFoshanGaomingasanExample.ChinaIndustry&InformationTechnology.GuangzhouDaily(2020).BuildGaomingChinahydrogencity!Theworld’sfirstcommerciallyoper-atedhydrogenenergytramgoesonline.GuangzhouDaily.[online]available:https://www.gzdaily.cn/amucsite/web/index.html#/detail/1077938[accessedNovember2021].HydrogenCouncilandMcKinsey(2021).HydrogenInsights.APerspectiveonHydrogenInvestment,MarketDevelopmentandCostCompetitiveness.Geneva:HydrogenCouncil,McKinsey&Company.[online]available:https://hydrogencouncil.com/wp-content/uploads/2021/02/Hydrogen-Insights-2021-Report.pdf[accessedNovember2021].HydrogenEurope(2021).FuelCellsHydrogen.HydrogenEurope.[online]available:https://hydro-geneurope.eu/fuel-cells[accessedFebruary2021].IEA(2019).TheFutureofHydrogen.Paris:InternationalEnergyAgency.[online]available:https://www.iea.org/reports/the-future-of-hydrogen[accessedNovember2021].IEA(2021).FuelcellEVsstockbyregionandbymode,2020.IEA.[online]available:https://www.iea.org/data-and-statistics/charts/fuel-cell-elec-tric-vehicles-stock-by-region-and-by-mode-2020[accessedOctober2021].JiadingDistrict(2018).HydrogenenergyandfuelcellindustrialparkunveiledJiadingDistrictPeople’sGovernmentofShanghaiMunicipality.[online]available:http://www.jiading.gov.cn/zwpd/zwdt/content_478343[accessedMay2021].MEE(2014).ReportontheStateoftheEnvironmentinChina2013.Beijing:MinistryofEcologyandEnvironmentofthePeople’sRepublicofChina.[online]available:http://english.mee.gov.cn/Resources/Reports/soe/soe2011/201606/P020160601591756378883.pdfMEE(2020a).StatisticalReportofNationalEcologicalEnvironmentfrom2016-2019.Beijing:MinistryofEcologyandEnvironmentofthePeople’sRepublicofChina.[online]available:http://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202012/P020201214580320276493.pdfMEE(2020b).ChinaMobileSourceEnvironmentalManagementAnnualReport(2020).Beijing:MinistryofEcologyandEnvironmentofthePeople’sRepublicofChina.[online]available:http://www.mee.gov.cn/hjzl/sthjzk/ydyhjgl/202008/P020200811521365906550.pdfMEE(2021).ReportontheStateoftheEcologyandEnvironmentinChina2020.Beijing:MinistryofEcologyandEnvironmentofthePeople’sRepublicofChina.[online]available:https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202105/P020210526572756184785.pdfMF(2020).MinistryofFinance,MinistryofIndustryandInformation,MinistryofScienceandTechnology,DevelopmentandReformCommission,NationalEnergyAdministration:NoticeontheDemonstrationApplicationofFCVs.MinistryofFinanceofthePeople’sRepublicofChina.[online]available:http://www.mof.gov.cn/gkml/caizhengwengao/202001wg/wg202009/202012/t20201230_3638265.htm[accessedNovember2021].MF(2021).MinistryofFinance,MinistryofIndustryandInformationTechnology,MinistryofScienceandTechnology,NationalDevelopmentandReformCommission,&NationalEnergyAdministration:NoticeofStartingDemonstrationApplicationsofFuelCellVehicles.MinistryofFinanceofthePeople’sRepublicofChina.MST(2009).NoticeontheImplementationofEnergy-SavingandNewEnergyVehicleDemonstrationandPromotionPilotWork.Beijing:27MinistryofScienceandTechnologyofthePeople’sRepublicofChina.[online]available:http://www.most.gov.cn/tztg/200902/t20090211_67363.htm[accessedNovember2021].Nahar,G.,D.MoteandV.Dupont(2017).Hydrogenproductionfromreformingofbiogas:ReviewoftechnologicaladvancesandanIndianperspective.RenewableandSustainableEnergyReviews,76,1032–52.NBSC(2020).ChinaStatisticalYearbook2020(No.9–1).Beijing:NationalBureauofStatisticsofChina.[online]available:http://www.stats.gov.cn/tjsj/ndsj/2020/indexch.htm[accessedNovember2021].NPGF(2020).FoshanNanhaiDistrictHydrogenIndustryDevelopmentPlan(2020–2035).NanhaiPeople’sGovernmentofFoshan.[online]available:http://www.nanhai.gov.cn/attachment/0/82/82806/4191926.pdf[accessedNovember2021].PIA(2021).BaofengSolarElectrolysisWaterHydrogenProductionComprehensiveDemonstrationProjectWasOfficiallyPutIntoOperation.Beijing:PetrochemicalIndustryApplication.Rapier,R.(2021).Estimatingthecarbonfoot-printofhydrogenproduction.ForbesMagazine.[online]available:https://www.forbes.com/sites/rrapier/2020/06/06/estimating-the-carbon-foot-print-of-hydrogen-production/[accessedFebruary2021].Saur,G.andA.Milbrandt(2014).RenewableHydrogenPotentialfromBiogasintheUnitedStates.Golden,Colorado:NationalRenewableEnergyLaboratory.[online]available:https://www.nrel.gov/docs/fy14osti/60283.pdf?gathStatI-con=true[accessedNovember2021].Saurabh(2021).Indiaplansgreenhydrogenauc-tions.CleanTechnica.[online]available:https://cleantechnica.com/2021/02/28/india-plans-green-hydrogen-auctions/[accessedMarch2021].SEMCandSMRIEP(2016).StudyonSourceAnalysisandControlCountermeasuresofPM2.5inShanghai.ChinaScienceandTechnologyAchievements.Shanghai:ShanghaiEnvironmentalMonitoringCenter.ShanghaiMunicipaResearchInstituteofEnvironmentalProtection.[online]available:https://doi.org/10.3772/j.issn.1009-5659.2016.18.008[accessedNovember2021].SinoHytec(2021).Companyprofile.SinoHytec.[online]available:http://www.sinohytec.com/en/page.php?id=1[accessedMay2021].SMBS(2020).ShanghaiStatisticalYearbook2020.ShanghaiMunicipalBureauofStatistics.UNDP(2021).AcceleratingtheDevelopmentandCommercializationofFuelCellVehiclesinChina.UnitedNationsDevelopmentProgrammeinChina.Wang,Z.(2021).ThoughtsonthePolicyTrendofHydrogenIndustryandtheTransformationofElectricPowerIndustry.Shanghai,China:HydrogenfromRenewableEnergyForum.WEF(2018).Thesecountriesarepioneeringhydro-genpower.WorldEconomicForum.[online]avail-able:https://www.weforum.org/agenda/2019/01/these-countries-are-pioneering-hydrogen-pow-er-d941536b-4206-4fa1-8932-8596d7b856bd/[accessedFebruary2021].WorldSteelAssociation(2020).SteelStatisticalYearbook2020ConciseVersion.[online]available:https://www.worldsteel.org/zh/dam/jcr:5001dac8-0083-46f3-aadd-35aa357acbccSteel%2520Statistical%2520Yearbook%25202020%2520%2528concise%2520ver-sion%2529.pdfShanghaiMunicipalBureauStatistics.Yara(2021).YarapartnerswithStatkraftandAkerHorizonstoestablishEurope’sfirstlarge-scalegreenammoniaprojectinNorwayYaraInternational.Yara.[online]available:https://www.yara.com/corporate-releases/yara-partners-with-statkraft-and-aker-horizons-to-establish-europes-first-large-scale-green-ammonia-project-in-norway/[accessedMarch2021].ZhangjiakouMun.(2020).ImplementationPlanofPhaseIProjectofZhangjiakouHydrogenEnergyGuaranteeSupplySystem.Zhangjiakou:ThePeople’sGovernmentofZhangjiakouMunicipality.ZMBS(2020).StatisticalBulletinonEconomicandSocialDevelopmentofZhangjiakouin2019.ZhangjiakouMunicipalBureauStatistics.[online]available:http://tjj.zjk.gov.cn/content/2020/28681.html[accessedNovember2021].Santos,D.K.,R.D.Rufino,J.M.Luna,V.A.SantosandL.A.Sarubbo(2016).Biosurfactants:MultifunctionalBiomoleculesofthe21stCentury.InternationalJournalofMolecularSciences,17(3),401.Sencrop(2020).Sencrop–Theconnectedag-weatherstationavailabletoall.[online],available:https://sencrop.com/en/[accessedJuly2020].Sharma,D.,E.Gupta,J.Singh,P.VyasandD.Dhandjal(2018).Chapter10.Microbialbiosur-factantsinfoodsanitation.InGalanakis,C.M.,(ed.)Sustainablefoodsystemsfromagriculturetoindus-try:improvingproductionandprocessing,Waltham:ElsevierSigmaAldrich[online],available:https://www.sig-maaldrich.com/[accessed2020].Siracusa,V.andM.D.Rosa(2018).SustainablePackaging.InGalanakis,C.M.,(ed.)Sustainablefoodsystemsfromagriculturetoindustry:improvingproductionandprocessing,Waltham:Elsevier.SKAGINN3X[online],available:https://www.skagin-n3x.com/[accessed2020].Stoica,M.(2018).Chapter9.Sustainablesanita-tioninthefoodindustry.InGalanakis,C.M.,(ed.)Sustainablefoodsystemsfromagriculturetoindus-try:improvingproductionandprocessing,Waltham:ElsevierTanaka,T.,K.Fujihara,M.S.JamiandM.Iwata(2014).Constant-currentelectroosmoticdewateringofsuperabsorbenthydrogel.ColloidsandSurfacesA.PhysicochemicalandEngineeringAspects,(440),116-21.Tavman,S.,S.Otles,S.GlaueandN.Gogus(2019).FoodPreservationtechnologies.InGalanakis,C.M.,(ed.)SavingFood:Production,SupplyChain,FoodWasteandFoodConsumption,Waltham:Elsevier.Torti,M.J.,C.A.Sims,C.M.AdamsandP.J.Sarnoski(2016).Polysaccharidesasalternativemoistureretentionagentsforshrimp.JournalofFoodScience,(81),S728–S35.Toshiba(2019).Electrodeforelectrolysis,elec-trodeunit,electrolyzer,etc.capableofefficientlyperformingvariouselectrolysissuchasgenerationofhypochlorousacidwaterusedassterilizationdisinfectionwater.[online],available:https://www3.wipo.int/wipogreen-database/SearchDetailPage.htm?query=toshiba%20electrode&type=all&id=T-GREEN20114[accessed2020].Tuku[online],available:https://tukuinc.com/intelli-gent-packaging/[accessed2020].UN(2020).SDG12Sustainableconsumptionandproduction.[online],available:https://www.un.org/sustainabledevelopment/sustainable-consump-tion-production/[accessedJuly2020].USDA(2017).USDAandEPAJoinwithPrivateSector,CharitableOrganizationstoSetNation’sFirstFoodWasteReductionGoals.[online],available:https://www.usda.gov/media/press-re-leases/2015/09/16/usda-and-epa-join-private-sec-tor-charitable-organizations-set[accessed2017].WEF(2020).Locustsareputting5millionpeopleatriskofstarvation–andthat’swithoutCOVID-19.[online],available:https://www.weforum.org/agen-da/2020/06/locusts-africa-hunger-famine-covid-19/[accessedJuly2020].WFP(2019).ZeroFoodLossInitiativeUpdate,no.2(January).December3rd,2019.Rome:WorldFoodProgramme.WITT-Gasetechnik[online],available:https://www.wittgas.com/[accessed2020].WorldBank(2017).ICTinAgriculture:ConnectingSmallholderstoKnowledge,Networks,andInstitutions.UpdatedEdition,Washington,DC:WorldBank.WRI(2019a).MajorFoodRetailers&ProvidersJoinNew“10x20x30”FoodLossandWasteInitiative.[online],available:https://www.wri.org/news/2019/09/release-major-food-retailers-provid-ers-join-new-10x20x30-food-loss-and-waste-initia-tive[accessed2020].WRI(2019b).Reducingfoodlossandwaste:SettingaGlobalActionAgenda,Washington,DC:WorldResourceInstitute.Xue,L.andG.Liu(2019).Introductiontoglobalfoodlossesandfoodwaste.Edsby,ElsevierInc:Waltham.InGalanakis,C.M.,(ed.)SavingFood:Production,SupplyChain,FoodWasteandFoodConsumption,Waltham:ElsevierInc.©WIPO,2022Attribution4.0International(4.0CCBY)TheCClicensedoesnotapplytonon-WIPOcontentinthispublication.Cover:GettyImages/WladimirBulgar/SciencePhotoLibraryWIPOReferenceNo.RN2022-4EDOI:10.34667/tind.44764AboutUsTheWIPOGlobalChallengesDivisionisresponsibleforaddressinginnovationandIPatthenexusofinterconnectedglobalissues,withaparticularfocusonglobalhealth,climatechangeandfoodsecurity.TheDivision’sactivities,includingthetwomulti-stakeholderplatformsitadministersandtrilateralcooperationwiththeWorldHealthOrganizationandWorldTradeOrganization,aimtoharnessthepowerofinnovativepartnershipstogeneratepracticalsolutionsforthebenefitofall–especiallydevelopingcountries.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱