2022SEPClimateChangeandEnergySecurity:TheDilemmaorOpportunityoftheCentury?SerhanCevikWP/22/174©2022InternationalMonetaryFundWP/22/174IMFWorkingPaperEuropeanDepartmentClimateChangeandEnergySecurity:TheDilemmaorOpportunityoftheCentury?PreparedbySerhanCevik1AuthorizedfordistributionbyAlfredoCuevasSeptember2022IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicitcommentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.AbstractThispaperinvestigatestheconnectionbetweenclimatechangeandenergysecurityinEuropeandprovidesempiricalevidencethattheseissuesarethetwofacesofthesamecoin.Usingapanelof39countriesinEuropeovertheperiod1980–2019,theempiricalanalysispresentedinthispaperindicatesthatincreasingtheshareofnuclear,renewables,andothernon-hydrocarbonenergyandimprovingenergyefficiencycouldleadtoasignificantreductionincarbonemissionsandimproveenergysecuritythroughoutEurope.Accordingly,policiesandreformsaimedatshiftingawayfromhydrocarbonsandincreasingenergyefficiencyindistributionandconsumptionarekeytomitigatingclimatechange,reducingenergydependence,andminimizingexposuretoenergypricevolatility.JELClassificationNumbers:Q43;Q47;Q48;Q54;Q55;Q58;H20Keywords:Climatechange;energysecurity;carbonemissions;energyefficiency;Europe;transitioneconomiesAuthor’sE-MailAddress:scevik@imf.org1TheauthorwouldliketothankBorjaGracia,GeeHeeHong,IanParry,HugoRojas-Romagosa,andtheparticipantsofseminarsattheBankofLithuaniaandtheEuropeanDepartmentoftheInternationalMonetaryFund(IMF)fortheirinsightfulcommentsandsuggestions,andSabihaMohonaandSadhnaNaikforexcellentresearchassistance.I.INTRODUCTIONClimatechangeisacceleratingrapidly,withanarrowpossibilitytoescapeitsworstenvironmentalandsocioeconomicconsequences.Theglobalaveragesurfacetemperaturehasalreadyincreasedbyabout1.1degreesCelsius(°C)comparedwiththepreindustrialaverageduring1850–1900,amplifyingthefrequencyandseverityofclimateshocksacrosstheworld(Figure1).Theriskofextremeweatherevents,suchasheatwaves,wildfires,droughts,flooding,andseverestorms,isprojectedtoincreaseoverthenextcentury,astheglobalmeantemperaturecontinuestorisebyasmuchas4°Coverthenextcentury(IPCC2007,2014,2019;2021).Accordingtothelatestassessment,ifgreenhousegas(GHG)emissionsremainonthecurrentgrowthpath,globalwarmingisprojectedtoreach4-6°Cby2100—anunprecedentedshiftwithgreaterprobabilityoflargerandirreversibleenvironmentalchangesunseeninmillionsofyearsthatthreatendevastationinswathesofthenaturalworldandrendermanyareasunlivable.Although189countrieshavecommittedtoreducecarbondioxide(CO2)emissionsby30percentin15yearsuntil2030,globalCO2emissionscontinuedtoincreasesincethe2015ClimateAccordby2.3percentto36.3billionmetrictonsin2021—thehighestlevelinhistory.GeopoliticaltensionsareastarkreminderthatenergysecurityremainsacriticalchallengeforEurope.Besidesthedeathtoll,humanmisery,anddestructionofphysicalcapital,Russia’sinvasionofUkrainehasunsettledglobalenergymarketsandinterruptedtheflowofoilandnaturalgastoEuropeduetointernationalsanctionsonRussia.Thepriceofcrudeoilhasincreasedfromanaverageof$68perbarrelin2021toashighas$124in2022,whilethepriceofnaturalgasinEuropejumpedtoarecordhighof€345permegawatt-hour,whichistheoilequivalentof$600perbarrel(Figure2).Atthesametime,pricevolatilityhashitnewheightsasaresultoftheuncertainoutputofrenewableassetsandatightsupply-and-demandbalanceintheEuropeanpowersystem.Althoughitisstilltooearlytoknowhoweventsmightunfold,thecrisiswilllikelyresultinlong-lastingchangesinenergysupplynetworksandenergysourcesinthegenerationofelectricity.Similartotheemergenceofenergysecurity—uninterruptedaccesstoaffordableenergy—asapolicyconceptafterthefirstoilshockofthe1970s,thelatestboutofgeopoliticaltensionsinEuropehasrekindledpolicydiscourseonthemacro-criticalimportanceFigure1.GlobalClimateChangeSource:NOAA.-0.6-0.4-0.20.00.20.40.60.81.01.218801890190019101920193019401950196019701980199020002010GlobalTemperatureAnomalies(DegreesCelsius,deviationfromtrend)GlobalTemperatureAnomalies(2018-2019comparedwith1951-1980average)4ofensuringanadequatesupplyofenergyatastableandreasonableprice.Whileitappearslikeadilemma,strengtheningenergysecurityandaddressingclimatechangearethetwofacesofthesamecoin.PoliciesandstructuralreformsaimedatreducingdependenceonfossilfuelswouldthereforedelivernotonlyasignificantreductioninCO2emissions,butalsohelpimproveenergysecuritythroughoutEurope.ChangingtheenergymatrixandimprovingenergyefficiencycouldbringasignificantreductioninCO2emissionsandstrengthenenergysecurity.Movingawayfromfossilfuelsiscertainlynecessarytomitigateclimatechange,andthatrequiresglobalCO2emissionstopeakby2025andreachnetzeroby2050.Unfortunately,thecurrentpaceofCO2emissionsisstillnotconsistentwiththegoalsoftheParisagreement(IPCC,2021).Usingapanelof39countriesinEuropeovertheperiod1980–2019,theempiricalanalysispresentedinthispaperfindsthatincreasingtheshareofnuclear,renewables,andothernon-hydrocarbonenergyandimprovingenergyefficiencycouldcontributetoasignificantreductioninCO2emissionsandimportedsourcesofenergy.Theresultsshowthattheshareofnon-hydrocarbonsourcesofenergyandenergyefficiencyareassociatedwithlowerCO2emissionsandenergyimportsinthelongrun,aftercontrollingforeconomic,demographic,andinstitutionalfactors.ThesestatisticallysignificanteffectsareparticularlymorepronouncedinemergingEuropeaneconomies,indicatingpotentiallysubstantialgainsinbothenvironmentaloutcomesandenergysecurity.Thispapertakesstockofpoliciesandreformscountriesareimplementingtomitigateandadapttoclimatechange.WithinEurope,theBalticSeabasinisparticularlyvulnerabletoglobalwarmingcausedbyclimatechange.TheannualwarmingtrendfortheBalticshasbeenabout0.10°Cperdecade,whichistwiceasmuchastheglobalaverageof0.05°Cperdecade(Aholaandothers,2021).Overthenextcentury,theprojectedincreaseinannualmeansurfacetemperaturewillremainsignificantlyabovetheglobalaverageunderalldifferentscenariosandreachashighas4.3°C(Meierandothers,2022).Althoughglobalwarmingmayinitiallyprovideaboosttoeconomicactivityinthenorthernhemisphere,greatervolatilityinclimaticconditionsandaprojectedincreaseofasmuchas75percentinprecipitationduringwinterintheBalticswillbringsignificantdownsiderisks.Theseadversedevelopmentswillaffectbiodiversity,foodproduction,Figure2.InternationalEnergyPricesSource:IMF.020406080100120140160Jan-00Jul-02Jan-05Jul-07Jan-10Jul-12Jan-15Jul-17Jan-20CrudeOilPrice(US$perbarrel)05101520253035Jan-00Jul-02Jan-05Jul-07Jan-10Jul-12Jan-15Jul-17Jan-20NaturalGasPriceinEurope(US$spermillionmetricBritishthermalunit)5infrastructureandweather-sensitiveothereconomicactivitysuchastransportationandtourism.Accordingly,policiesandreformsaimedatshiftingawayfromhydrocarbonstoalternativesourcesofenergyandincreasingenergyefficiencyindistributionandconsumptionarekeytomitigatingclimatechange,reducingenergydependence,andminimizingexposuretoenergypricevolatility.Tothisend,environmentaltaxation,includingacarbontaxand“feebates”onfossilfuels,couldpromotethetransitiontolow-carbonsourcesofenergyandraiseadditionalfiscalrevenues,whichcanprovideappropriatefundingtocompensatethemostvulnerablehouseholdsandinvestinstructuralresilience.Theremainderofthispaperisstructuredasfollows.SectionIIprovidesanoverviewofpotentialmacroeconomiceffectsofclimatechange.SectionIIIpresentsthedatausedintheanalysisandstylizedfactsonCO2emissions,energysecurity,andenergyefficiencyinEurope.SectionIVpresentstheempiricalanalysisanddiscussesclimatechangemitigationstrategies.SectionVprovidesanoverviewofclimatechangeadaptationstrategies.Finally,SectionVIoffersconcludingremarkswithpolicyrecommendations.II.CLIMATECHANGEANDTHEECONOMYClimaterisksfallintotwocategories—physicalrisksandtransitionrisks—thatcouldalsohavecross-borderspillovers.Climatereferstoadistributionofweatheroutcomesforagivenlocation,andclimatechangedescribesenvironmentalshiftsinthedistributionofweatheroutcomestowardsextremes.Accordingly,climaterisksreflecttheprobabilityorlikelihoodofoccurrenceofweather-relatedhazardouseventsintheforeseeablefutureortrendsmultipliedbytheimpactsoftheseeventsortrendsoccurringoveralongperiodofgenerations.Risksassociatedwithclimatechangefallintotwocategories:(i)physicalrisks;and(ii)transitionrisks.•Physicalrisksofclimatechangerelatetodamagescausedbycurrentweather-relatedevents,suchashurricanes,heatwaves,droughtsorflooding,whichareprojectedtoincreaseinfrequencyandintensity,andlong-termchangesinclimatesuchasglobalwarmingandsea-levelrise.Extremechangesinclimaticconditionscouldsignificantlyreducetheproductivityofcoastalareasandagriculturallandduetoanincreaseinsealevelandchangesinprecipitationpatterns,respectively.Hence,physicalrisksassociatedwithclimatechangemayleadtosignificanteconomicandfinanciallossesduetopotentiallyseveredamagestotheincomeflowandassetportfolioofhouseholds,nonfinancialfirms,banks,andinsurers(Batten,Sowerbutts,andTanaka,2016;Battistonandothers,2017;Campiglioandothers,2018;IMF,2020a,2021;Monasterolo,2020;Ramírez,Thomä,andCebreros,2020).Physicalrisksofclimatechangemayalsohavesignificantimpactonthefiscalpositionanddebtsustainability,withnegativerepercussionsthroughouttheeconomy(CevikandJalles,2020;2021;2022).•Transitionrisksofclimatechangeemanatefromeffortstobuildagreeneconomy.Transitionrisksmaterializewhenchangesintechnology,standards,taxation,andotherpoliciesturncarbon-intensiveassetsintostrandedassetsandamplifylossesthroughfinancialinterconnectedness(Batten,Sowerbutts,andTanaka,2016;Battistonandothers,2017;Caldecott,2018;Campiglioandothers,2018;PointnerandRitzberger-Grünwald2019;IMF,2020a,2021).Thereisanadditionalliabilityrisk,whichreferstothelegalrisks6frompartiesadverselyaffectedbyclimatechangeandclimatechangepolicy(KunreutherandMichel-Kerjan,2007;Ackerman,2017).Therefore,transitionriskscapturetheuncertaintiesrelatedtothetimingandspeedoftheadjustmenttoalow‐carboneconomy.Whilemovingtowardsagreenereconomyisthebeneficialobjective,itgeneratessignificantfinancingneedsandresultsinstructuralchanges.Cross-borderspilloversstemmingfromtheoccurrenceofphysicalandtransitionrisksinothercountriesshouldalsobetakenintoaccount.Cross-borderspilloverofclimaterisksoccurthroughinternationaltradeandsupplychainlinkagesaswellaschangesinstandards,taxationandotherpoliciesintradingpartners(Benzieandothers,2019;Carterandothers,2021;Feng,Li,Prasad,2021).Overall,althoughidentifyingthemacroeconomicimpactofannualvariationinclimaticconditionsremainsachallengingempiricaltask,Gallup,Sachs,andMellinger(1999),Nordhaus(2006),andDell,Jones,andOlken(2012)findthathighertemperaturesresultinasignificantreductionineconomicgrowthindevelopingcountries.Burke,Hsiang,andMiguel(2015)confirmthisfindingandconcludethatanincreaseintemperaturewouldhaveagreaterdamageincountriesthatareconcentratedingeographicareaswithhotterclimates.Usingexpandeddatasets,Acevedoandothers(2018),BurkeandTanutama(2019)andKahnandothers(2019)showthatthelong-termmacroeconomicimpactofweatheranomaliesisunevenacrosscountriesandthateconomicgrowthrespondsnonlinearlytotemperature.Box1.EffectsofClimateChangeSealevelincrease.Sealevelisrisingatanincreasingrate,worseningtheextentofhigh-tidefloodingandstormsurgearoundtheworld.Evenifglobalwarmingstaysbelow2°C,sealevelsareprojectedtosurge2-3metersby2300andby5-7meterswithfasterglobalwarming.By2100,once-in-a-centurycoastalfloodeventswilloccuratleastonceperyearatmorethanhalfofcoastlinesacrosstheglobe.Widespreadflooding.Climatechangeisintensifyingtheriskoffloodsaswellasdroughts.Whilemoreintenseevaporationwillleadtomoredroughts,warmeraircanproduceextremerainfall.Onaverage,thefrequencyofheavydownpourshasalreadyincreasedbyabout30percentandtheycontainabout7percentmorewater.Extremeheatwaves.Extremeheatwaves,suchasthedeadlyonethatoccurredinmanypartsofNorthAmericainsummer2021,arealreadyaboutfivetimesmorelikelytooccurwithexistingwarmingof1.2°C.Withglobalwarmingof2°C,thisfrequencyincreasesto14timesaslikelytooccur.Heatwavesaregettinghotter,andwith2°Cofglobalwarming,thehottesttemperatureswouldreachnearly3°Chigherthanpreviousheatwaves.Severedroughts.Climatechangeisincreasingthefrequencyandseverityofdroughts.Severedroughtsthatusedtohappenatanaverageofonceperdecadearenowoccurringabout70percentmorefrequently.Ifglobalwarmingreaches2°Cabovethepreindustrialaverage,severedroughtswilloccurbetweentwoandthreetimesasoften.Weatherwhiplash.Climatechangeisnotjustincreasingtheseverityofextremeweatherevents,butitisalsointerruptingthenaturalpatternsandcreatinga“weatherwhiplash”—wildswingsbetweendryandwetextremes—destructivefloodsinoneyearandextremedroughtsinthenext.Source:IPCC(2021).7III.DATAOVERVIEWANDSTYLIZEDFACTSThispaperusesanunbalancedpaneldatasetofannualobservationscovering39countriesinEuropeduringtheperiod1980–2019.TheseriesaredrawnfromtheIMF’sInternationalFinancialStatisticsandWorldEconomicOutlookdatabases,theWorldBank’sWorldDevelopmentIndicatorsdatabase,theU.S.EnergyInformationAdministration,andtheInternationalCountryRiskGuide.Summarystatistics,presentedinTable1,indicatelargevariationsinenvironmentaloutcomesintermsofCO2emissionsinmetrictonspercapita2andenergysecurityasmeasuredbytheratioofnetenergyimportstoGDP.Themainexplanatoryvariablesofinterestareenergyefficiency(orintensity)asmeasuredbyenergyconsumptionperunitofrealGDP3andtheshareofnuclear,renewableandothernon-hydrocarbonsourcesofenergy,whichshowconsiderableheterogeneityacrosscountriesandovertime.Followingtheliterature,Iintroduceasetofcontrolvariables,includingrealGDPpercapita,tradeopennessasmeasuredbytheshareofinternationaltradeinGDP,population,theshareofurbanpopulationintotal,andameasureofinstitutionalquality.Itisnecessarytoanalyzethetime-seriespropertiesofthedatatoavoidspuriousresultsbyconductingpanelunitroottests.ThestationarityofallvariablesarecheckedbyapplyingtheIm-Pesaran-Shin(2003)andtheKaravias-Tzavalis(2014)tests,whicharewidelyusedintheempiricalliteraturetoconductapanelunitroottest(withstructuralbreaksinthecaseoftheKaravias-Tzavalis(2014)procedure).Theresults,availableuponrequest,indicatethatthevariablesusedintheanalysisarestationaryafterlogarithmictransformationoruponfirstdifferencing.Table1.SummaryStatisticsThereisconsiderableheterogeneityinthevulnerabilitytoclimatechangeamongEuropeancountries.AspresentedinFigure3,somecountriesinEuropearealmosttwiceas2CO2emissionsrepresentmorethan80percentofgreenhousegasemissionsinEurope.3Whileenergyintensitymeasuresthequantityofenergyrequiredperunitoutputattheaggregatelevel,energyefficiencymeasurestheamountofenergyusedatthedisaggregatedlevelinindividualactivities.Inthispaper,IusethesetermsinterchangeablytocapturetheamountofenergyusedtoproduceaunitofrealGDPinapanelofcountries.AspresentedinthechartsinFigure3,alowerreadingofenergyconsumptionperunitofrealGDPimpliesahigherlevelofenergyefficiency(orintensity).VariableObs.MeanStd.Dev.Min.Max.CO2emissionspercapita1,4717.64.10.634.5Netenergyimports1,36634.9106.5-843.5100.0Energyefficiency1,3615.86.61.6166.9Non-hydrocarbonenergy1,41752.937.50.0100.0RealGDPpercapita1,54425,20421,154619112,373Tradeopenness1,49296.052.713.4380.1Population1,84517,700,00028,200,00021,453149,000,000Urbanization1,80469.714.733.898.1Bureaucraticquality1,2753.11.00.04.0Source:EIA;IMF;WorldBank;author'scalculations.8vulnerabletothreatsassociatedwithclimatechangethanothers.Furthermore,thereisasignificantrelationshipbetweenclimatechangevulnerabilityandresilience.Countrieswithgreatervulnerabilityalsotendtobelessresilienttoclimatechange,accordingtotheND-GAINindices.Inthemeantime,theevolutionofCO2emissionsshowsEurope’sgreaterprogressrelativetotherestoftheworld.Thereisacleardownwardtrendsince1980bothinadvancedanddevelopingEuropeancounties.However,theprevailingtrendinCO2emissions,especiallyonapercapitabasis,isstillnotconsistentwiththepathwaytonetzeroemissionsby2050.ThisislargelyduetoEurope’sdependenceonhydrocarbonsasamajorsourceofenergysource,evenFigure3.ClimateVulnerability,CO2Emissions,EnergyEfficiencySource:ND-GAIN;EIA;WorldBank;author’scalculations.SRBMDAALBROULVAUKRHRVBIHLTUMKDMNESVKHUNCYPESTBGRNLDRUSBLRBELMLTPRTGRCPOLIRLISLITASVNCZEFRALUXGBRDEUFINAUTCHENOR0.20.30.40.50.60.70.80.90.20.250.30.350.40.45ClimateResilienceClimateVulnerabilityClimateResiliencevs.Vulnerability,2019050001000015000200002500030000350004000019801983198619891992199519982001200420072010201320162019WorldEuropeCarbonEmissions(Millionmetrictonnes)02468101219601963196619691972197519781981198419871990199319961999200220052008201120142017WorldEuropeCarbonEmissions(Metrictonspercapita)0246810121419801983198619891992199519982001200420072010201320162019WorldEuropeAverageEnergyEfficiency(1000Btu/2015$GDPPPP)012345678910RUSUKRMLTSRBBLRNORBIHBGRBELFINMDACZESWENLDMNESVKGRCSVNPOLMKDLVALTUESTEnergyEfficiency:2019(1000Btu/2015$GDPPPP)0.000.050.100.150.200.250.300.350.400.45SRBMDAALBROULVAUKRHRVBIHLTUMKDMNESVKHUNCYPESTBGRNLDRUSBLRBELMLTPRTGRCPOLIRLISLITASVNCZEFRALUXGBRDEUFINAUTCHENORClimateVulnerability,20199astheshareofnon-hydrocarbonenergycontinuestoincreaseacrossthecontinent.Animportantconsiderationwiththeenergymixisheavyrelianceonimports,whichaccountforover60percentofallformsofenergyandasmuchas90percentinthecaseofnaturalgas.Inthiscontext,energyefficiencyisacriticalfactorforreducingCO2emissionsandenergyimports.Europehasmadeasignificantprogress—evenmorethantherestoftheworld—inenergyefficiencyandmanagedtoreducetheamountofenergyusedtoproduceaunitofGDPby46.4percentoverthepastfourdecades.Thereis,however,stillconsiderablecross-countryvariation,withtheBalticsleadingtherestinenergyefficiency.IV.CLIMATECHANGEMITIGATIONEuropeancountriesstillhaveampleopportunitiestoreduceCO2emissionsthroughbroad-basedpoliciesandreforms.Inparticular,therearethreekeyareaswheremoreambitiousandcomprehensiveinitiativescouldmakeasignificantcontributiontowardsnet-zeroemissionsthroughoutEurope:(i)eliminatingdistortionaryenergysubsidies;(ii)introducingacarbontaxandfeesonhigh-emissionproductscombinedwithrebatesonlow-emissionproducts;and(iii)improvingenergyefficiencyanddecarbonizingtheenergysector.EnergysubsidiesinEuropecontinuetodistorteconomicincentivesandcontributetoenvironmentaldegradation.SubsidiesonfossilfuelsandelectricityamounttosignificantamountsinsomecountriesinEurope,butthereisconsiderablevariationinthesizeandtypesofenergysubsidies.Fossilfuelsubsidiesarelargerincommodity-richcountries,suchasRussia,whileelectricitysubsidiesaremoreprevalentintherestofthecontinent.4Thewidespreaduseofenergysubsidiesunderminesfiscalsustainability,divertresourcesawayfrommoreproductiveareas(suchaseducationandhealthcare),benefitstherichmorethanthepoor,anddiscouragesefficiencyimprovementsintheenergysector.Consequently,energysubsidieshavebecomeadistortionaryburdenonlong-termeconomicgrowthandtheenvironmentduetooverconsumption.Moreefficientpricingofenergy,ontheotherhand,wouldreduceCO2emissionsbymorethanathirdrelativetothebaselinelevel,keepglobalwarmingbelow1.5°C,raiseadditionalrevenues,andimproveenvironmentalquality(Parry,Black,andVernon,2021).Fiscalpolicymeasures,includingacarbontaxonfossilfuels,arethemostefficienttoolforclimatechangemitigation.Evenamodestcarbonpricecanhelpmobilizeinvestmentinnon-hydrocarbonsourcesofenergy,encouragegreaterenergyefficiency,andtherebyinducesignificantabatementinCO2emissions(IMF,2020b;Blackandothers,2021;Gugler,Haxhimusa,andLiebensteiner,2021;Parry,Black,andRoaf,2021).AslongasCO2emissionsremainfree,thereisnoeffectiveincentivetoalterbehavior.Incontrast,imposingataxonCO2emissionsrelaysapowerfulsignalthroughouttheeconomy.Carbon-intensivegoodsandserviceswouldbecomemoreexpensiveandrebalanceconsumptionpatternstowardlow-carbonoptions.Blackandothers(2021)proposesarangeofcarbontaxesforadvanced,high-incomeemergingmarketsandlow-incomeemergingmarkets—$75,$50and$25permetrictonofCO2emissions,4EvenEUgovernmentsprovided€112billioninsubsidiestotheproductionandconsumptionoffossilfuelsin2021(Nowag,Mundaca,andÅhman,2021).10respectively.5Itisalsonecessarytoconsiderothermeasuressuchas“feebates”—feesonproductswithhighemissionscombinedwithrebatesonproductswithlowemissions—incarbon-intensivesectors.SimulationexercisesconfirmtheeffectivenessofacarbontaxinreducingCO2emissionsinlinewiththeParisAgreement.Thesimulationanalysis,basedontheClimatePolicyAssessmentTool(CPAT)framework(IMF,2019;Parry,Black,andVernon,2021),showsthatfossilfuelsareunderpricedinEuropeancountriesrelativetonegativeexternalities.6Acomprehensivecarbontaxwouldthereforehelpattaintheoptimalpricethattakesintoaccountnegativeexternalitiesandleadstoconvergencetowardstheemissionsreductiontarget.7Table2presentstheimpactofaneconomy-widecarbontaxsettograduallyincreasetoUS$50permetrictonofCO2emissionsby2030.AssumingthatacarbontaxofUS$50permetrictonofCO2emissionsistheonlypolicyinstrumentused,thesimulationresultssuggestthatallBalticcountrieswouldachievereducingGHGemissionsby40percentby2030.Thereis,however,considerablevariationacrosscountries.WhileEstoniaandLatviawouldneedhighercarbontaxestocutemissionsinlinewiththetargets,LithuaniawouldreduceemissionsmorethantargetedwithacarbontaxofUS$50permetricton.Thisvariationintheimpactofacarbontaxreflectscross-countrydifferencesinemission-reductiontargetsandtheexistingenergymix,whichleadtodifferencesintheTable2.ImpactofCarbonTaxintheBalticsandBeyond5Only17percentofemissionsarecoveredbyacarbonprice,whichremainsatanaverageofUS$3permetrictonofCO2emissions.6TheCPATprovidescountry-specificprojectionsoffueluseandCO2emissionsbytheenergy,industrial,transportation,andresidentialsectors.ThemodelisparameterizedusingdatacompiledfromtheIEAonrecentfuelusebycountryandsector.RealGDPprojectionsarefromthelatestIMFforecasts.Dataonenergytaxes,subsidies,andpricesbyenergyproductandcountryiscompiledfrompubliclyavailableandIMFsources,withinputsfromproprietaryandthird-partysources.InternationalenergypricesareprojectedforwardusinganaverageofIEAandIMFprojectionsforcoal,oil,andnaturalgasprices.Assumptionsforfuelpriceresponsivenessarechosentobebroadlyconsistentwithempiricalevidenceandresultsfromenergymodels.7TheBalticsparticipateintheEUEmissionsTradingSystem(ETS),whichcoversonlyabout30percentofnationalCO2emissions.AdditionalFiscalRevenue(percentofGDP)CountryFullrecyclingofcarbontaxNorecyclingofcarbontaxEstonia1.03-0.19-0.57Latvia0.64-0.11-0.35Lithuania0.75-0.13-0.41CzechRepublic1.07-0.20-0.60Germany0.42-0.08-0.23Hungary0.95-0.16-0.52Poland1.38-0.25-0.77Source:Author'scalculations119.8RealGDPGrowthImpact(percentagepoints)CarbonTaxofUS$50by2030ProportionofEmissionsGapNarrowedbyPolicy(percent)29.877.435.540.094.454.6Note:TheimpactofacarbontaxespertonofCO2isdeterminedaccordingtotheCPATframeworkasoutlinedinIMF(2019)andParry,Black,andVernon(2021).11responsivenessofemissionstochangesinfossil-fuelprices.Furthermore,sincetheCPATusespriceelasticityassumptionstodeterminechangestotheenergymix,ifacountryinitiallyhasanexceptionallylowlevelofrenewableenergy,changesinfossil-fuelpriceswillnotelicitalargeincreaseinrenewables.Thus,non-taxpoliciesarenecessarytostimulateinvestmentinalternativesourcesofenergy,andthesepoliciesarenotcoveredintheCPATframework.Theeconomicimpactofacarbontaxvariesfromcountrytocountryaccordingtotheinitialenergymatrixandupstreamlinkagesintheenergysector.SimulationsbasedontheCPATmodelalsoshowthattherewouldbesubstantialrevenuegainsfromtheintroductionofacarbontax,withamoderatenegativeimpactoneconomicgrowth.Thesemacro-fiscaleffectswillvaryfromcountrytocountryaccordingtotheinitialenergymatrixandupstreamlinkagesintheenergysector.Forexample,atUS$50permetrictonofCO2emissions,acarbontaxwouldyieldadditionalrevenueof0.64percentofGDPinLatviaand0.75percentofGDPinLithuaniaandasmuchas1.03percentofGDPinthecaseofEstonia.Theimpactoneconomicgrowth,ontheotherhand,appearstobemoderate(-0.4percentagepointsforLithuania,-0.35forLatviaand-0.6forEstonia)andsmallassumingthatadditionalrevenuesarerecycledbackintotheeconomythroughlowertaxesorhigherinvestmentspending(-0.1percentagepointsinLithuaniaandLatviaand-0.2percentagepointsinEstonia).Furthermore,compensatorypoliciesdesignedtorecycleadditionalrevenuethroughloweringothertaxesandincreasingtargetedcashtransfersandpublicinvestmentcanalleviateadverseeffectsondisposablehouseholdincome.Decarbonizationmuststartintheenergysector,whichisresponsibleforabout80percentofCO2emissionsinEurope.CO2emissionsarearesultof(i)population,(ii)GDPpercapita,(iii)carboncontentofenergyresources,and(iv)energyconsumptionperunitofGDP.ReducingCO2emissionsrequiresthereductionofoneormoreofthesefourfactors,whichimpliesthatpoliciesshouldfocusondecarbonizingtheenergymatrix(lowerCO2emissionsperunitofenergy)andenhancingenergyefficiency(lowerenergyconsumptionperunitofGDP).WhiletheamountofenergyusedtoproduceaunitofGDPdeclinedby55.4percentacrosstheworldoverthepastfourdecadesthankstomoreenergy-efficientproductionprocessesandgreaterenergyefficiencyofconsumergoodsandservices,improvingenergyefficiencyremainsoneofthemostimportantfactorstoreduceCO2emissionsandstrengthenenergysecurity.A.ChangingtheEnergyMatrixIncreasingtheshareofrenewable,nuclearandothernon-hydrocarbonenergyshouldlowerCO2emissionsandstrengthenenergysecurity.ThispaperusesaconceptualframeworkthatrelatestoCO2emissionsandenergysecuritytotechnologicalandregulatoryimprovementsandpolicychoicesasmanifestedinenergyefficiencyandtheshareofnon-hydrocarbonenergy,alongwithmacroeconomicandinstitutionaldeterminants.MovingawayfromfossilfuelscanmakeabigcontributiontoeffortsthroughoutEuropetowardmeetingtheclimatecommitmentsbyreducingCO2emissions.Hence,Iempiricallyinvestigatetheimpactofnuclear,renewableandothernon-hydrocarbonenergyonCO2emissionsinapanelof39countriesinEuropeovertheperiod1980–2019accordingtothefollowingspecification:12𝑦𝑖,𝑡=𝛽1+𝛽2𝐴𝐸𝑖,𝑡+𝛽3𝑋𝑖,𝑡+𝜂𝑖+𝜇𝑡+𝜀𝑖,𝑡where𝑦𝑖,𝑡denotesthelogarithmofCO2emissionsinmetrictonspercapitaorenergysecuritymeasuredbynetenergyimportsasashareofGDPincountryiandtimet;𝐴𝐸𝑖,𝑡istheshareofalternativesourcesofenergyincludingnuclear,renewableandothernon-hydrocarbons;𝑋𝑖,𝑡isavectorofcontrolvariablesincludingthelogarithmofrealGDPpercapita,tradeopenness,thelogarithmofpopulation,theshareofurbanpopulationandameasureofinstitutionalquality,whicharecommonlyusedintheliterature(NarayanandNarayan,2010;PiaggioandPadilla,2012;ÖzbuğdayandErbaş,2015;GökgözandGüvercin,2018;Tajudeen,Wossink,andBanerjee,2018;Xiaandothers,2020;Cevik,2022a;2022b).The𝜂𝑖and𝜇𝑡coefficientsdenotethetime-invariantcountry-specificeffectsandthetimeeffectscontrollingforcommonshocksthatmayaffectCO2emissionsandenergysecurityacrossallcountriesinagivenyear,respectively.𝜀𝑖,𝑡istheerrorterm.Toaccountforpossibleheteroskedasticity,robuststandarderrorsareclusteredatthecountrylevel.Estimationresults,presentedinTable3,confirmthattheshiftawayfromhydrocarbonsourcesofenergyhelpsreduceCO2emissionsandbolstersenergysecurity.Theestimatedcoefficientonnon-hydrocarbonenergyishighlysignificant.InthecaseofallEuropeancountries,a10percentagepointincreaseintheshareofnon-hydrocarbonenergyisassociatedwithlowerCO2emissionsof3percentagepointsinthelongrun,aftercontrollingforeconomic,demographic,andinstitutionalTable3.Non-HydrocarbonEnergy,CO2EmissionsandEnergySecurityAllAEsEMsAllAEsEMsNon-hydrocarbonenergy-0.003-0.001-0.012-0.006-0.003-0.022[0.002][0.001][0.002][0.005][0.002][0.012]RealGDPpercapita0.6180.4190.6890.4470.2291.733[0.117][0.105][0.169][0.310][0.344][0.731]Tradeopenness-0.001-0.001-0.0010.0010.0010.005[0.001][0.001][0.001][0.001][0.002][0.004]Population0.6630.3762.007-0.125-0.1292.176[0.348][0.167][0.298][0.620][0.712][1.483]Urbanization0.0050.0080.0030.0460.0570.052[0.008][0.006][0.008][0.024][0.031][0.073]Bureaucraticquality0.0480.1430.0200.0620.0170.272[0.056][0.048][0.066][0.078][0.098][0.193]Numberofobservations1,145823322874640234Numberofcountries392712372611CountryFEYesYesYesYesYesYesYearFEYesYesYesYesYesYesAdjR20.410.560.780.450.460.44Source:Author'sestimations.CO2EmissionsEnergyImportsNote:Thedependentvariableiscarbonemissionsinmetrictonspercapitaandenergysecurityasmeasuredbytheshareofnetenergyimportsintotalenergyuse.Robuststandarderrors,clusteredatthecountrylevel,arereportedinbrackets.Aconstantisincludedineachregression,butnotshowninthetable.,,anddenotesignificanceatthe10%,5%,and1%levels,respectively.13factors.8ThemagnitudeofthiseffectisevengreateramongemergingEuropeancountries,withacoefficientof-0.012comparedto-0.001inadvancedEuropeaneconomies.Theanalysisalsoshowsthatreducingrelianceonhydrocarbon-basedenergyhasahighlysignificanteffectonenergysecurity.Forthefullsampleofcountries,a10percentagepointincreaseintheshareofnon-hydrocarbonenergyisassociatedwithareductionof6percentagepointsinenergyimports,aftercontrollingforconventionalfactors.Themagnitudeofthiseffectissignificantlygreaterwithacoefficientof-0.022amongemergingEuropeancountriescomparedto-0.003inadvancedeconomies.Allinall,theseempiricalfindingsconfirmthatdecarbonizationnotonlyhasacentralroleinmitigatingCO2emissions,butalsoinbolsteringenergysecuritythroughoutEurope.B.ImprovingEnergyEfficiencyGreaterenergyefficiencybringsasignificantreductioninCO2emissionsandstrengthensenergysecurity.Improvingenergyefficiency—measuredasenergyintensityofeconomicactivity—canmakeabigcontributiontoeffortsthroughoutEuropetowardmeetingtheclimatecommitmentsbyreducingCO2emissionspercapita.ThereisanecdotalevidenceindicatingthatcountrieswithgreaterenergyefficiencytendtohavelowerenergyimportsandCO2emissions,aswellaslowerenergycostforconsumers.Accordingly,thispaperalsoinvestigatestheimpactofenergyefficiencyonCO2emissionsandenergysecurity,asdefinedabove,inapanelof39countriesinEuropeovertheperiod1980–2019,employingthefollowingspecification:𝑦𝑖,𝑡=𝛽1+𝛽2𝐸𝐸𝑖,𝑡+𝛽3𝑋𝑖,𝑡+𝜂𝑖+𝜇𝑡+𝜀𝑖,𝑡where𝑦𝑖,𝑡denotesthelogarithmofCO2emissionspercapitaornetenergyimportsasashareofGDPincountryiandtimet;𝐸𝐸𝑖,𝑡isenergyefficiencyasmeasuredbythelogarithmofenergyconsumptionperunitofrealGDP;𝑋𝑖,𝑡isavectorofcontrolvariablesincludingthelogarithmofrealGDPpercapita,tradeopenness,thelogarithmofpopulation,theshareofurbanpopulation,andameasureofinstitutionalquality.Asabove,the𝜂𝑖and𝜇𝑡coefficientsdenotethetime-invariantcountry-specificeffectsandthetimeeffectscontrollingforcommonshocksthatmayaffectCO2emissionsandenergysecurityacrossallcountries,respectively.𝜀𝑖,𝑡istheerrorterm.Toaccountforpossibleheteroskedasticity,robuststandarderrorsareclusteredatthecountrylevel.Estimationresults,presentedinTable4,confirmthatimprovingenergyefficiencyreducesCO2emissionsandstrengthensenergysecurity.Theestimatedcoefficientonenergyefficiencyiseconomicallyandstatisticallyhighlysignificant.Broadlyinlinewithpreviousstudies,a10percentagepointincreaseinenergyefficiencyisassociatedwithlowerCO2emissionsof8.8percentagepointsandenergyimportsofabout2percentoverthelongrun,aftercontrollingforeconomic,demographic,andinstitutionalfactors.Theseeffectsofenergyefficiencyaresignificantacrossallcountrygroups,butappeartobestrongeramongadvancedeconomies,whichcouldreflectgreaterefficiencygainsinadvancedeconomiesinthepast.Nevertheless,thesefindingsindicatethatimprovingenergyefficiencycanplayafundamentalroleinmitigatingCO2emissionsandstrengtheningenergysecuritybyreducingdependenceonimportedsourcesofenergy.Therefore,to8Theestimatedcoefficientsoncontrolvariableshavetheexpectedsignsandsomearealsostatisticallysignificant.14decarbonizeeconomicactivity,policiesandreformsshouldaimtoimproveenergyefficiencyincommercialandresidentialuseasmuchasshiftingtheenergymatrixawayfromfossilfuels.Table4.EnergyEfficiency,CO2EmissionsandEnergySecurityV.CLIMATECHANGEADAPTATIONEuropeancountriesneedtomainstreamclimatechangeadaptationintodevelopmentplanstobecomemoreresilient.Long-termrisksassociatedwithclimatechangecannotbecompletelyeliminated,whichmeansgovernmentmusttakedecisiveactiontostrengthenphysical,financial,institutionalandsocialresilience.Avarietyofadaptationmeasureshavebeenintroducedtoenhanceresiliencetoclimatechange,buttherearestillsignificantgapsthatkeeptheregionvulnerabletothreatsassociatedwithclimatechange.Enhancingstructuralresiliencerequiresinfrastructureandotherex-anteinvestmentstolimittheimpactofdisasters,including“hard”policymeasures(e.g.,upgradingpublicinfrastructure),and“soft”measures(e.g.developingearlywarningsystemsandstrengtheningzoningandbuildingcodes);buildingfinancialresilienceinvolvescreatingfiscalbuffersandusingprearrangedfinancialinstrumentstoprotectfiscalsustainabilityandmanagerecoverycosts;andpost-disasterandsocialresiliencerequirescontingencyplanningandrelatedinvestmentsensuringaspeedyresponsetoadisaster.Thereareupfrontfiscalcostsofclimatechangeadaptationbutinvestinginstructuralresiliencewouldyieldlong-runbenefits.Althoughclimatechangeadaptationhassignificantupfrontcosts,thelackofinactionontheclimatefrontwouldhaveanevengreatercostforAllAEsEMsAllAEsEMsEnergyefficiency-0.088-0.121-0.046-0.019-0.047-0.013[0.015][0.013][0.014][0.040][0.038][0.049]RealGDPpercapita0.8750.8600.6780.4020.1931.663[0.106][0.124][0.163][0.305][0.330][0.763]Tradeopenness-0.001-0.000-0.0020.0010.0010.006[0.001][0.001][0.001][0.001][0.002][0.005]Population0.0040.3011.0650.3650.5002.096[0.237][0.214][0.273][0.513][0.684][1.901]Urbanization0.0060.0050.0050.0440.0570.064[0.005][0.004][0.008][0.023][0.030][0.067]Bureaucraticquality0.0280.0760.0150.0540.0280.282[0.031][0.039][0.050][0.076][0.082][0.228]Numberofobservations1,143825318880646234Numberofcountries382612362511CountryFEYesYesYesYesYesYesYearFEYesYesYesYesYesYesAdjR20.620.670.740.450.460.39Source:Author'sestimations.CO2EmissionsEnergyImportsNote:Thedependentvariableiscarbonemissionsinmetrictonspercapitaandenergysecurityasmeasuredbytheshareofnetenergyimportsintotalenergyuse.Robuststandarderrors,clusteredatthecountrylevel,arereportedinbrackets.Aconstantisincludedineachregression,butnotshowninthetable.,,anddenotesignificanceatthe10%,5%,and1%levels,respectively.15generations.Furthermore,investinginclimate-resilientinfrastructurewouldreducedamagefromnaturaldisastersandincreaseexpectedreturnstoprivateinvestmentandoutput.Well-designedpolicymeasurescouldalsohavesustainedexpansionaryeffectsthroughhighergrowthinemploymentandwagesandlowermigration,whichtendstooccurincountriesthataremorevulnerabletoclimate-relatednaturaldisasters.Nature-basedsolutionsareessentialinthefightagainstclimatechangeandcouldalsocontributetothedevelopmentofnewbusinessopportunities.Thereisgrowingrecognitionthatclimatechangeiscausingbiodiversitylossacrosstheworld,whilenaturehasafundamentalroleinclimatechangemitigationandadaptation(IPBES,2019).Inviewoftheseinterlinkages,nature-basedsolutions—designedtoprotect,sustainablymanageandrestorenaturalecosystems—canbecomehighlyeffectiveinprovidingeconomicwell-beingaswellasgreaterbiodiversitybenefits.Inparticular,nature-basedsolutionscanbeappliedtoaddressarangeofclimaterisks,includingcoastalhazards,floodsandsoilerosion,andrisingtemperaturesanddrought(Kaposandothers,2019).Anotherimportantadvantageofnature-basedsolutionsforadaptationisthecost,whichtendstobesignificantlylessthantraditionalinfrastructureforaddressingclimatehazards(Narayanandothers,2016;Regueroandothers,2020)andgeneratesubstantialeconomicandsocialbenefits(Rizvi,2014;Menéndezandothers,2020;Seddonandothers,2020).Financingclimatechangemitigationandadaptationeffortswillrequiremobilizingadditionalresourcesandreformingpublicfinancialmanagement.Adaptingtoclimatechangeisnotcheap,anditwillrequiresubstantialamountofadditionalupfrontresourcestoinvestinphysicalinfrastructureandotherkeyareastoincreaseresilienceandlessenthemacro-financialimpactofclimatechange.Inthiscontext,greenfinancingcouldprovidevaluableresourcesforsustainableinvestmentprojects.Thesustainability-linkeddebtmarkethasreachedUS$2.5trillionwithnetnewissuanceofUS$660billionin2020.Themostsignificantcomponentofthismarketintermsofsizeandenvironmentalimpactisgreenbondsthatareusedtofinanceprojectstofacilitateclimatechangeadaptationandmitigation.Despiteitsrapidgrowth,however,sovereigngreenbondsremainsmall—about1percent—comparedtotraditionaldebtinstrumentsissuedbygovernments.Countrieswithsignificantclimate-relatedinvestmentneedsmustimprovetheinstitutionalframework,includingrobustandtransparentpublicfinancialmanagementsystemsandprocesses,togainfullaccesstotheglobalflowofgreenfinancing(Mejía-Escobar,González-Ruiz,andFranco-Sepúlveda,2021).VI.CONCLUSIONEuropeisfacingthedoublejeopardyofclimatechangeandenergyinsecurity,withfar-reachingeconomicandfinancialrepercussions.Theglobalaveragesurfacetemperaturehasalreadyincreasedbyabout1.1degrees°Ccomparedwiththepreindustrialaverage,whichamplifiesthefrequencyandseverityofclimateshocksacrosstheworld.WithinEurope,theBalticSearegionisparticularlyvulnerabletoglobalwarmingcausedbyclimatechange,withanannualwarmingtrendtwiceasmuchastheglobalaverage.Atthesame,theexplosionofgeopoliticaltensionstriggeredbyRussia’sinvasionofUkrainehasunsettledglobalenergymarkets.Whileitisstilltooearlytoknowhoweventsmightunfold,thecrisiswilllikelyresultinlong-lastingchanges16inenergysupplynetworksandenergysourcesinthegenerationofelectricity.Thisiswhyaddressingclimatechangeandstrengtheningenergysecurityarethetwofacesofthesamecoin.PoliciesandstructuralreformsaimedatreducingdependenceonfossilfuelswoulddelivernotonlyasignificantreductioninCO2emissions,butalsohelpimproveenergysecuritythroughoutEurope.Well-designedpoliciesandstructuralreformswouldhelpreduceCO2emissionsandstrengthenenergysecurity.Toguardagainstthreatsassociatedwithclimatechange,countriesneedtoproceedontwofronts:(i)climatemitigation,whichreferstopoliciesthathelpreduceCO2emissionsand(ii)climateadaptation,whichreferstoeffortstoadapttotheeffectsofclimatechangeincludingthroughminimizingdamagesfromclimate-relateddisastersaswellastoadapttotheeffectsofeconomictransformations.Usingapanelof39countriesinEuropeovertheperiod1980–2019,theempiricalanalysispresentedinthispaperindicatesthatincreasingtheshareofnuclear,renewables,andothernon-hydrocarbonenergyandimprovingenergyefficiencycouldleadtoasignificantreductioninCO2emissionsandimproveenergysecuritythroughoutEurope.9Fromarisk-rewardperspective,thebenefitsofreducingtherisksofclimatechangeandstrengtheningenergysecurityclearlyoutweighthepotentialcostofmitigationpoliciesintheshortrun.Environmentaltaxes,includingacomprehensive,economy-widecarbontaxonfossilfuels,couldalsoraiseconsiderablerevenues,whichcanexpandthepost-pandemicfiscalspaceandprovideadditionalfundingtocompensatethemostvulnerablehouseholds,buildamultilayeredsafetynet,andstrengthenstructuralresilience.Europeancountriesmustmainstreamadaptationintodevelopmentplanstostrengthenresilienceagainstclimatechange.Long-termclimateriskscannotbecompletelyeliminated,andthusgovernmentsmusttakedecisiveactiontostrengthenphysical,financial,institutionalandsocialresilience.AvarietyofadaptationmeasureshavebeenintroducedtoenhanceresiliencetoclimatechangethroughoutEurope,buttherearestillsignificantgapsthatkeepsomecountries,suchastheBaltics,morevulnerabletothreatsassociatedwithclimatechange.Enhancingstructuralresiliencerequiresinfrastructureandotherex-anteinvestmentstolimittheimpactofdisasters,whilebuildingfinancialresilienceinvolvescreatingfiscalbuffersandusingprearrangedfinancialinstrumentstoprotectfiscalsustainabilityandmanagerecoverycosts.Thesemeasureswillhaveupfrontfiscalcosts,butthelackofinactionontheclimatefrontwouldhaveanevengreatercostforgenerations.Furthermore,strengtheningphysicalandfinancialresiliencewouldreducedamagesfromclimatechangeandincreaseexpectedreturnstoprivateinvestmentandoutput.9Therearealsostudiesshowingthatincreasingtheshareofrenewablesourcesofenergyhasapositiveeffectoneconomicgrowth(NarayanandDoytch,2017;DoytchandNarayan,2021).REFERENCESAckerman,F.,2017,Worst-CaseEconomics:ExtremeEventsinClimateandFinance(NewYork:AnthemPress).Ahola,M.,andothers,2021,“ClimateChangeintheBalticSea:2021FactSheet,”BalticSeaEnvironmentProceedings(BSEP)No.180(Helsinki:HelsinkiCommission).Acevedo,S.,M.Mrkaic,N.Novta,E.Pugacheva,andP.Topalova(2018)“TheEffectsofWeatherShocksonEconomicActivity:WhatAretheChannelsofImpact?”IMFWorkingPaperNo.18/144(Washington,DC:InternationalMonetaryFund).Batten,S.,R.Sowerbutts,andM.Tanaka,2016,“Let'sTalkAbouttheWeather:TheImpactofClimateChangeonCentralBanks,”BankofEnglandStaffWorkingPaperNo.603(London:BankofEngland).Battiston,S.,andothers,2017,“AClimateStress-TestoftheFinancialSystem,”NatureClimateChange,Vol.7,pp.283–288.Benzie,M.,andothers,2021,“Cross-BorderClimateChangeImpacts:ImplicationsfortheEuropeanUnion,”RegionalEnvironmentalChange,Vol.19,pp.763–776.Black,S.,andothers,2021,“NotonTracktoNet-Zero:TheUrgentNeedforGreaterAmbitionandPolicyActiontoAchievetheParisAgreement’sGoals,”IMFStaffClimateNoteNo.21/5(Washington,DC:InternationalMonetaryFund).Burke,M.,andV.Tanutama(2019)“ClimaticConstraintsonAggregateEconomicOutput,”NBERWorkingPaperNo.25779(Cambridge,MA:NationalBureauofEconomicResearch).Caldecott,B.,2018,StrandedAssetsandtheEnvironment:Risk,ResilienceandOpportunity,(London:Routledge).Campiglio,E.,andothers,2018,“ClimateChangeChallengesforCentralBanksandFinancialRegulators,”NatureClimateChange,Vol.8,pp.462–468.Carter,T.,andothers,2021,“AConceptualFrameworkforCross-BorderImpactsofClimateChange,”GlobalEnvironmentalChange,Vol.69,pp.102307.Cevik,S.,2022a,“WaitingforGodot?TheCaseforClimateChangeAdaptationandMitigationinSmallIslandStates,”JournalofEnvironmentalEconomicsandPolicy,DOI:10.1080/21606544.2022.2049372.Cevik,S.,2022b,“DirtyDance:TourismandEnvironment,”InternationalReviewofAppliedEconomics,DOI:.Cevik,S.,andJ.Jalles,2020,“FeelingtheHeat:ClimateShocksandCreditRatings,”IMFWorkingPaperNo.20/286(Washington,DC:InternationalMonetaryFund).Cevik,S.,andJ.Jalles,2021,“AnApocalypseForetold:ClimateShocksandSovereignDefaults,”OpenEconomiesReview,Vol.3,pp.89–108.Cevik,S.,andJ.Jalles,2022,“ThisChangesEverything:ClimateShocksandSovereignBonds,”EnergyEconomics,Vol.107,pp.105856.Dell,M.,B.Jones,andB.Olken(2012)“TemperatureShocksandEconomicGrowth:EvidencefromtheLastHalfCentury,”AmericanEconomicJournal:Macroeconomics,Vol.4,pp.66–95.18Doytch,N.,andS.Narayan,2021,“DoesTransitioningTowardsRenewableEnergyAccelerateEconomicGrowth?AnAnalysisofSectoralGrowthforaDynamicPanelofCountries,”Energy,Vol.235,pp.121290.Feng,A.,H.Li,andA.Prasad,2021,“WeAreAllintheSameBoat:Cross-BorderSpilloversofClimateRiskthroughInternationalTradeandSupplyChain,”IMFWorkingPaperNo.21/13(Washington,DC:InternationalMonetaryFund).Gallup,J.,J.Sachs,andA.Mellinger(1999)“GeographyandEconomicDevelopment,”InternationalRegionalScienceReview,Vol.22,pp.179–232.Gökgöz,F.,andM.Güvercin,2018,“EnergySecurityandRenewableEnergyEfficiencyinEU,”RenewableandSustainableEnergyReviews,Vol.96,pp.226–239.Gugler,K.,A.Haxhimusa,andM.Liebensteiner,2021,“EffectivenessofClimatePolicies:CarbonPricingvs.SubsidizingRenewables,”JournalofEnvironmentalEconomicsandManagement,Vol.106,pp.102405.Im,K.,M.Pesaran,andY.Shin,2003,“TestingforUnitRootsinHeterogeneousPanels,”JournalofEconometrics,Vol.115,pp.53–74.InternationalMonetaryFund(IMF),2019,“FiscalPoliciesforParisClimateStrategies—FromPrincipletoPractice,”IMFPolicyPaper(Washington,DC:InternationalMonetaryFund).InternationalMonetaryFund(IMF),2020a,“PhysicalRiskandEquityPrices,”GlobalFinancialStabilityReport,Chapter5,April2020(Washington,DC:InternationalMonetaryFund).InternationalMonetaryFund(IMF),2020b,“MitigatingClimateChange,”WorldEconomicOutlook,Chapter3,October2020(Washington,DC:InternationalMonetaryFund).IntergovernmentalScience-PolicyPlatformonBiodiversityandEcosystemServices(IPBES),2019,GlobalAssessmentReportonBiodiversityandEcosystemServicesoftheIntergovernmentalScience-PolicyPlatformonBiodiversityandEcosystemServices,editedbyBrondizio,E.,J.Settele,S.Díaz,andH.Ngo(Bonn:IntergovernmentalScience-PolicyPlatformonBiodiversityandEcosystemServices).IntergovernmentalPanelonClimateChange(IPCC),2007,FourthAssessmentReport,IntergovernmentalPanelonClimateChange(NewYork:CambridgeUniversityPress).IntergovernmentalPanelonClimateChange(IPCC),2014,ClimateChangein2014:MitigationofClimateChange.WorkingGroupIIIContributiontotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange(NewYork:CambridgeUniversityPress).IntergovernmentalPanelonClimateChange(IPCC),2019,IPCCSpecialReportontheOceanandCryosphereinaChangingClimate,editedbyH.-O.Pörtner,D.Roberts,V.Masson-Delmotte,P.Zhai,M.Tignor,E.Poloczanska,K.Mintenbeck,A.Alegría,M.Nicolai,A.Okem,J.Petzold,B.Rama,andN.Weyer(NewYork:CambridgeUniversityPress).IntergovernmentalPanelonClimateChange(IPCC),2021,ClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange[Masson-Delmotte,V.,P.Zhai,A.Pirani,S.L.Connors,C.Péan,S.Berger,N.Caud,Y.Chen,L.Goldfarb,M.I.Gomis,M.Huang,K.Leitzell,E.Lonnoy,J.B.R.Matthews,T.K.Maycock,T.Waterfield,O.Yelekçi,R.YuandB.Zhou(eds.)](NewYork:CambridgeUniversityPress).InPress.19Kahn,M.,K.Mohaddes,R.Ng,M.Pesaran,M.Raissi,andJ-C.Yang(2019)“Long-TermMacroeconomicEffectsofClimateChange:ACross-CountryAnalysis,”IMFWorkingPaperNo.19/215(Washington,DC:InternationalMonetaryFund).Kapos,V.,andothers,2019,TheRoleoftheNaturalEnvironmentinAdaptation(Washington,D.C.:GlobalCommissiononAdaption).Karavias,Y.,andE.Tzavalis,2014,“TestingforUnitRootsinShortPanelsAllowingforaStructuralBreak,”ComputationalStatistics&DataAnalysis,Vol.76,pp.391–407.Kunreuther,H.,andE.Michel-Kerjan,2007,“ClimateChange,InsurabilityofLarge-scaleDisastersandtheEmergingLiabilityChallenge,”NBERWorkingPaperNo.12821(Cambridge,MA:NationalBureauofEconomicResearch).Meier,H.,andothers,2022,”ClimateChangeintheBalticSeaRegion:ASummary,”EarthSystemDynamics,Vol.13,pp.457–593.Mejía-Escobar,J.,J.González-Ruiz,andG.Franco-Sepúlveda,2021,“CurrentStateandDevelopmentofGreenBondsMarketintheLatinAmericaandtheCaribbean,”Sustainability,Vol.13,10872.Menéndez,P.,andothers,2020,“TheGlobalFloodProtectionBenefitsofMangroves,”ScientificReports,Vol.10,pp.3–11.Monasterolo,I.2020,“ClimateChangeandtheFinancialSystem,”AnnualReviewofResourceEconomics,Vol.12,pp.1–22.Narayan,P.,andS.Narayan,2010,“CarbonDioxideEmissionsandEconomicGrowth:PanelDataEvidencefromDevelopingCountries,”EnergyPolicy,Vol.38,pp.661–666.Narayan,S.,andothers,2016,“TheEffectiveness,CostsandCoastalProtectionBenefitsofNaturalandNature-BasedDefenses,”PLoSONE,Vol.11,e0154735.Narayan,S.,andN.Doytch,2017,“AnInvestigationofRenewableandNon-RenewableEnergyConsumptionandEconomicGrowthNexusUsingIndustrialandResidentialEnergyConsumption,”EnergyEconomics,Vol.68,pp.160-176.Nowag,J.,L.Mundaca,andM.Åhman,2021,“PhasingOutFossilFuelSubsidiesintheEU?ExploringtheRoleofStateAidRules,”ClimatePolicy,Vol.21,pp.1037-1052.Özbuğday,F.,andB.Erbaş,2015,“HowEffectiveAreEnergyEfficiencyandRenewableEnergyinCurbingCO2EmissionsintheLongRun?AHeterogeneousPanelDataAnalysis,”Energy,Vol.82,pp.734–745.Parry,I.,S.Black,andN.Vernon,2021,“StillNotGettingEnergyPricesRight:AGlobalandCountryUpdateofFossilFuelSubsidies,”IMFWorkingPaperNo.21/236(Washington,DC:InternationalMonetaryFund).Parry,I.,S.Black,andJ.Roaf,2021,“AProposalforanInternationalCarbonPriceFloorAmongLargeEmitters,”IMFStaffClimateNoteNo.21/001(Washington,DC:InternationalMonetaryFund).Piaggio,M.,andE.Padilla,2012,”CO2EmissionsandEconomicActivity:HeterogeneityAcrossCountriesandNon-StationarySeries,”EnergyPolicy,Vol.46,pp.370–381.20Pointner,W.,andD.Ritzberger-Grünwald,2019,"ClimateChangeasaRisktoFinancialStability,"FinancialStabilityReport(Vienna:AustrianCentralBank).Ramírez,L.,J.Thomä,andD.Cebreros,2020,“TransitionRisksAssessmentbyLatinAmericanFinancialInstitutionsandtheUseofScenarioAnalysis,”TechnicalNoteNo.IDB-TN-195(Washington,DC:Inter-AmericanDevelopmentBank).Reguero,B.,andothers,2020,“FinancingCoastalResiliencebyCombiningNature-BasedRiskReductionwithInsurance,”EcologicalEconomics,Vol.169,106487.Rizvi,A.,2014,NatureBasedSolutionsforHumanResilience:AMappingAnalysisofIUCN’sEcosystemBasedAdaptationProjects(Washington,D.C.:InternationalUnionforConservationofNature).Seddon,N.,andothers,2020,“UnderstandingtheValueandLimitsofNature-BasedSolutionstoClimateChangeandOtherGlobalChallenges,”PhilosophicalTransactionsoftheRoyalSocietyB,Vol.375,20190120.Tajudeen,I.,A.Wossink,andP.Banerjee,“HowSignificantisEnergyEfficiencytoMitigateCO2Emissions?EvidencefromOECDCountries,”EnergyPolicy,Vol.72,pp.200–221.Xia,Q.,andothers,2020,“DriversofGlobalandNationalCO2EmissionsChanges2000–2017,”ClimatePolicy,Vol.21,pp.604–615.