欧洲的两难困境:能源安全还是气候行动?(英文版)--国际货币基金组织VIP专享VIP免费

2022
SEP
Climate Change and
Energy Security: The
Dilemma or
Opportunity of the
Century?
Serhan Cevik
WP/22/174
© 2022 International Monetary Fund WP/22/174
IMF Working Paper
European Department
Climate Change and Energy Security: The Dilemma or Opportunity of the Century?
Prepared by Serhan Cevik1
Authorized for distribution by Alfredo Cuevas
September 2022
IMF Working Papers describe research in progress by the author(s) and are published to elicit comments
and to encourage debate. The views expressed in IMF Working Papers are those of the author(s) and do
not necessarily represent the views of the IMF, its Executive Board, or IMF management.
Abstract
This paper investigates the connection between climate change and energy security in Europe
and provides empirical evidence that these issues are the two faces of the same coin. Using a
panel of 39 countries in Europe over the period 19802019, the empirical analysis presented in
this paper indicates that increasing the share of nuclear, renewables, and other non-hydrocarbon
energy and improving energy efficiency could lead to a significant reduction in carbon emissions
and improve energy security throughout Europe. Accordingly, policies and reforms aimed at
shifting away from hydrocarbons and increasing energy efficiency in distribution and consumption
are key to mitigating climate change, reducing energy dependence, and minimizing exposure to
energy price volatility.
JEL Classification Numbers:
Q43; Q47; Q48; Q54; Q55; Q58; H20
Keywords:
Climate change; energy security; carbon emissions; energy
efficiency; Europe; transition economies
Author’s E-Mail Address:
scevik@imf.org
1 The author would like to thank Borja Gracia, Gee Hee Hong, Ian Parry, Hugo Rojas-Romagosa, and the
participants of seminars at the Bank of Lithuania and the European Department of the International Monetary
Fund (IMF) for their insightful comments and suggestions, and Sabiha Mohona and Sadhna Naik for excellent
research assistance.
I. INTRODUCTION
Climate change is accelerating rapidly, with a narrow possibility to escape its worst
environmental and socioeconomic consequences. The global average surface temperature has
already increased by about 1.1 degrees Celsius (°C) compared with the preindustrial average
during 18501900, amplifying the frequency and severity of climate shocks across the world
(Figure 1). The risk of extreme weather events, such as heat waves, wildfires, droughts, flooding,
and severe storms, is projected to increase over the next century, as the global mean
temperature continues to rise by as much as 4°C over the next century (IPCC 2007, 2014, 2019;
2021). According to the latest assessment, if greenhouse gas (GHG) emissions remain on the
current growth path, global warming is projected to reach 4-6°C by 2100an unprecedented
shift with greater probability of larger and irreversible environmental changes unseen in millions
of years that threaten devastation in swathes of the natural world and render many areas
unlivable. Although 189 countries have committed to reduce carbon dioxide (CO2) emissions by
30 percent in 15 years until 2030, global CO2 emissions continued to increase since the 2015
Climate Accord by 2.3 percent to 36.3 billion metric tons in 2021the highest level in history.
Geopolitical tensions are a stark reminder that energy security remains a critical challenge
for Europe. Besides the death toll, human misery, and destruction of physical capital, Russia’s
invasion of Ukraine has unsettled global energy markets and interrupted the flow of oil and
natural gas to Europe due to international sanctions on Russia. The price of crude oil has
increased from an average of $68 per barrel in 2021 to as high as $124 in 2022, while the price of
natural gas in Europe jumped to a record high of €345 per megawatt-hour, which is the oil
equivalent of $600 per barrel (Figure 2). At the same time, price volatility has hit new heights as a
result of the uncertain output of renewable assets and a tight supply-and-demand balance in the
European power system. Although it is still too early to know how events might unfold, the crisis
will likely result in long-lasting changes in energy supply networks and energy sources in the
generation of electricity. Similar to the emergence of energy securityuninterrupted access to
affordable energyas a policy concept after the first oil shock of the 1970s, the latest bout of
geopolitical tensions in Europe has rekindled policy discourse on the macro-critical importance
Figure 1. Global Climate Change
Source: NOAA.
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
Global Temperature Anomalies
(Degrees Celsius, deviation from trend)
Global Temperature Anomalies
(2018-2019 compared with 1951-1980 average)
2022SEPClimateChangeandEnergySecurity:TheDilemmaorOpportunityoftheCentury?SerhanCevikWP/22/174©2022InternationalMonetaryFundWP/22/174IMFWorkingPaperEuropeanDepartmentClimateChangeandEnergySecurity:TheDilemmaorOpportunityoftheCentury?PreparedbySerhanCevik1AuthorizedfordistributionbyAlfredoCuevasSeptember2022IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicitcommentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.AbstractThispaperinvestigatestheconnectionbetweenclimatechangeandenergysecurityinEuropeandprovidesempiricalevidencethattheseissuesarethetwofacesofthesamecoin.Usingapanelof39countriesinEuropeovertheperiod1980–2019,theempiricalanalysispresentedinthispaperindicatesthatincreasingtheshareofnuclear,renewables,andothernon-hydrocarbonenergyandimprovingenergyefficiencycouldleadtoasignificantreductionincarbonemissionsandimproveenergysecuritythroughoutEurope.Accordingly,policiesandreformsaimedatshiftingawayfromhydrocarbonsandincreasingenergyefficiencyindistributionandconsumptionarekeytomitigatingclimatechange,reducingenergydependence,andminimizingexposuretoenergypricevolatility.JELClassificationNumbers:Q43;Q47;Q48;Q54;Q55;Q58;H20Keywords:Climatechange;energysecurity;carbonemissions;energyefficiency;Europe;transitioneconomiesAuthor’sE-MailAddress:scevik@imf.org1TheauthorwouldliketothankBorjaGracia,GeeHeeHong,IanParry,HugoRojas-Romagosa,andtheparticipantsofseminarsattheBankofLithuaniaandtheEuropeanDepartmentoftheInternationalMonetaryFund(IMF)fortheirinsightfulcommentsandsuggestions,andSabihaMohonaandSadhnaNaikforexcellentresearchassistance.I.INTRODUCTIONClimatechangeisacceleratingrapidly,withanarrowpossibilitytoescapeitsworstenvironmentalandsocioeconomicconsequences.Theglobalaveragesurfacetemperaturehasalreadyincreasedbyabout1.1degreesCelsius(°C)comparedwiththepreindustrialaverageduring1850–1900,amplifyingthefrequencyandseverityofclimateshocksacrosstheworld(Figure1).Theriskofextremeweatherevents,suchasheatwaves,wildfires,droughts,flooding,andseverestorms,isprojectedtoincreaseoverthenextcentury,astheglobalmeantemperaturecontinuestorisebyasmuchas4°Coverthenextcentury(IPCC2007,2014,2019;2021).Accordingtothelatestassessment,ifgreenhousegas(GHG)emissionsremainonthecurrentgrowthpath,globalwarmingisprojectedtoreach4-6°Cby2100—anunprecedentedshiftwithgreaterprobabilityoflargerandirreversibleenvironmentalchangesunseeninmillionsofyearsthatthreatendevastationinswathesofthenaturalworldandrendermanyareasunlivable.Although189countrieshavecommittedtoreducecarbondioxide(CO2)emissionsby30percentin15yearsuntil2030,globalCO2emissionscontinuedtoincreasesincethe2015ClimateAccordby2.3percentto36.3billionmetrictonsin2021—thehighestlevelinhistory.GeopoliticaltensionsareastarkreminderthatenergysecurityremainsacriticalchallengeforEurope.Besidesthedeathtoll,humanmisery,anddestructionofphysicalcapital,Russia’sinvasionofUkrainehasunsettledglobalenergymarketsandinterruptedtheflowofoilandnaturalgastoEuropeduetointernationalsanctionsonRussia.Thepriceofcrudeoilhasincreasedfromanaverageof$68perbarrelin2021toashighas$124in2022,whilethepriceofnaturalgasinEuropejumpedtoarecordhighof€345permegawatt-hour,whichistheoilequivalentof$600perbarrel(Figure2).Atthesametime,pricevolatilityhashitnewheightsasaresultoftheuncertainoutputofrenewableassetsandatightsupply-and-demandbalanceintheEuropeanpowersystem.Althoughitisstilltooearlytoknowhoweventsmightunfold,thecrisiswilllikelyresultinlong-lastingchangesinenergysupplynetworksandenergysourcesinthegenerationofelectricity.Similartotheemergenceofenergysecurity—uninterruptedaccesstoaffordableenergy—asapolicyconceptafterthefirstoilshockofthe1970s,thelatestboutofgeopoliticaltensionsinEuropehasrekindledpolicydiscourseonthemacro-criticalimportanceFigure1.GlobalClimateChangeSource:NOAA.-0.6-0.4-0.20.00.20.40.60.81.01.218801890190019101920193019401950196019701980199020002010GlobalTemperatureAnomalies(DegreesCelsius,deviationfromtrend)GlobalTemperatureAnomalies(2018-2019comparedwith1951-1980average)4ofensuringanadequatesupplyofenergyatastableandreasonableprice.Whileitappearslikeadilemma,strengtheningenergysecurityandaddressingclimatechangearethetwofacesofthesamecoin.PoliciesandstructuralreformsaimedatreducingdependenceonfossilfuelswouldthereforedelivernotonlyasignificantreductioninCO2emissions,butalsohelpimproveenergysecuritythroughoutEurope.ChangingtheenergymatrixandimprovingenergyefficiencycouldbringasignificantreductioninCO2emissionsandstrengthenenergysecurity.Movingawayfromfossilfuelsiscertainlynecessarytomitigateclimatechange,andthatrequiresglobalCO2emissionstopeakby2025andreachnetzeroby2050.Unfortunately,thecurrentpaceofCO2emissionsisstillnotconsistentwiththegoalsoftheParisagreement(IPCC,2021).Usingapanelof39countriesinEuropeovertheperiod1980–2019,theempiricalanalysispresentedinthispaperfindsthatincreasingtheshareofnuclear,renewables,andothernon-hydrocarbonenergyandimprovingenergyefficiencycouldcontributetoasignificantreductioninCO2emissionsandimportedsourcesofenergy.Theresultsshowthattheshareofnon-hydrocarbonsourcesofenergyandenergyefficiencyareassociatedwithlowerCO2emissionsandenergyimportsinthelongrun,aftercontrollingforeconomic,demographic,andinstitutionalfactors.ThesestatisticallysignificanteffectsareparticularlymorepronouncedinemergingEuropeaneconomies,indicatingpotentiallysubstantialgainsinbothenvironmentaloutcomesandenergysecurity.Thispapertakesstockofpoliciesandreformscountriesareimplementingtomitigateandadapttoclimatechange.WithinEurope,theBalticSeabasinisparticularlyvulnerabletoglobalwarmingcausedbyclimatechange.TheannualwarmingtrendfortheBalticshasbeenabout0.10°Cperdecade,whichistwiceasmuchastheglobalaverageof0.05°Cperdecade(Aholaandothers,2021).Overthenextcentury,theprojectedincreaseinannualmeansurfacetemperaturewillremainsignificantlyabovetheglobalaverageunderalldifferentscenariosandreachashighas4.3°C(Meierandothers,2022).Althoughglobalwarmingmayinitiallyprovideaboosttoeconomicactivityinthenorthernhemisphere,greatervolatilityinclimaticconditionsandaprojectedincreaseofasmuchas75percentinprecipitationduringwinterintheBalticswillbringsignificantdownsiderisks.Theseadversedevelopmentswillaffectbiodiversity,foodproduction,Figure2.InternationalEnergyPricesSource:IMF.020406080100120140160Jan-00Jul-02Jan-05Jul-07Jan-10Jul-12Jan-15Jul-17Jan-20CrudeOilPrice(US$perbarrel)05101520253035Jan-00Jul-02Jan-05Jul-07Jan-10Jul-12Jan-15Jul-17Jan-20NaturalGasPriceinEurope(US$spermillionmetricBritishthermalunit)5infrastructureandweather-sensitiveothereconomicactivitysuchastransportationandtourism.Accordingly,policiesandreformsaimedatshiftingawayfromhydrocarbonstoalternativesourcesofenergyandincreasingenergyefficiencyindistributionandconsumptionarekeytomitigatingclimatechange,reducingenergydependence,andminimizingexposuretoenergypricevolatility.Tothisend,environmentaltaxation,includingacarbontaxand“feebates”onfossilfuels,couldpromotethetransitiontolow-carbonsourcesofenergyandraiseadditionalfiscalrevenues,whichcanprovideappropriatefundingtocompensatethemostvulnerablehouseholdsandinvestinstructuralresilience.Theremainderofthispaperisstructuredasfollows.SectionIIprovidesanoverviewofpotentialmacroeconomiceffectsofclimatechange.SectionIIIpresentsthedatausedintheanalysisandstylizedfactsonCO2emissions,energysecurity,andenergyefficiencyinEurope.SectionIVpresentstheempiricalanalysisanddiscussesclimatechangemitigationstrategies.SectionVprovidesanoverviewofclimatechangeadaptationstrategies.Finally,SectionVIoffersconcludingremarkswithpolicyrecommendations.II.CLIMATECHANGEANDTHEECONOMYClimaterisksfallintotwocategories—physicalrisksandtransitionrisks—thatcouldalsohavecross-borderspillovers.Climatereferstoadistributionofweatheroutcomesforagivenlocation,andclimatechangedescribesenvironmentalshiftsinthedistributionofweatheroutcomestowardsextremes.Accordingly,climaterisksreflecttheprobabilityorlikelihoodofoccurrenceofweather-relatedhazardouseventsintheforeseeablefutureortrendsmultipliedbytheimpactsoftheseeventsortrendsoccurringoveralongperiodofgenerations.Risksassociatedwithclimatechangefallintotwocategories:(i)physicalrisks;and(ii)transitionrisks.•Physicalrisksofclimatechangerelatetodamagescausedbycurrentweather-relatedevents,suchashurricanes,heatwaves,droughtsorflooding,whichareprojectedtoincreaseinfrequencyandintensity,andlong-termchangesinclimatesuchasglobalwarmingandsea-levelrise.Extremechangesinclimaticconditionscouldsignificantlyreducetheproductivityofcoastalareasandagriculturallandduetoanincreaseinsealevelandchangesinprecipitationpatterns,respectively.Hence,physicalrisksassociatedwithclimatechangemayleadtosignificanteconomicandfinanciallossesduetopotentiallyseveredamagestotheincomeflowandassetportfolioofhouseholds,nonfinancialfirms,banks,andinsurers(Batten,Sowerbutts,andTanaka,2016;Battistonandothers,2017;Campiglioandothers,2018;IMF,2020a,2021;Monasterolo,2020;Ramírez,Thomä,andCebreros,2020).Physicalrisksofclimatechangemayalsohavesignificantimpactonthefiscalpositionanddebtsustainability,withnegativerepercussionsthroughouttheeconomy(CevikandJalles,2020;2021;2022).•Transitionrisksofclimatechangeemanatefromeffortstobuildagreeneconomy.Transitionrisksmaterializewhenchangesintechnology,standards,taxation,andotherpoliciesturncarbon-intensiveassetsintostrandedassetsandamplifylossesthroughfinancialinterconnectedness(Batten,Sowerbutts,andTanaka,2016;Battistonandothers,2017;Caldecott,2018;Campiglioandothers,2018;PointnerandRitzberger-Grünwald2019;IMF,2020a,2021).Thereisanadditionalliabilityrisk,whichreferstothelegalrisks6frompartiesadverselyaffectedbyclimatechangeandclimatechangepolicy(KunreutherandMichel-Kerjan,2007;Ackerman,2017).Therefore,transitionriskscapturetheuncertaintiesrelatedtothetimingandspeedoftheadjustmenttoalow‐carboneconomy.Whilemovingtowardsagreenereconomyisthebeneficialobjective,itgeneratessignificantfinancingneedsandresultsinstructuralchanges.Cross-borderspilloversstemmingfromtheoccurrenceofphysicalandtransitionrisksinothercountriesshouldalsobetakenintoaccount.Cross-borderspilloverofclimaterisksoccurthroughinternationaltradeandsupplychainlinkagesaswellaschangesinstandards,taxationandotherpoliciesintradingpartners(Benzieandothers,2019;Carterandothers,2021;Feng,Li,Prasad,2021).Overall,althoughidentifyingthemacroeconomicimpactofannualvariationinclimaticconditionsremainsachallengingempiricaltask,Gallup,Sachs,andMellinger(1999),Nordhaus(2006),andDell,Jones,andOlken(2012)findthathighertemperaturesresultinasignificantreductionineconomicgrowthindevelopingcountries.Burke,Hsiang,andMiguel(2015)confirmthisfindingandconcludethatanincreaseintemperaturewouldhaveagreaterdamageincountriesthatareconcentratedingeographicareaswithhotterclimates.Usingexpandeddatasets,Acevedoandothers(2018),BurkeandTanutama(2019)andKahnandothers(2019)showthatthelong-termmacroeconomicimpactofweatheranomaliesisunevenacrosscountriesandthateconomicgrowthrespondsnonlinearlytotemperature.Box1.EffectsofClimateChangeSealevelincrease.Sealevelisrisingatanincreasingrate,worseningtheextentofhigh-tidefloodingandstormsurgearoundtheworld.Evenifglobalwarmingstaysbelow2°C,sealevelsareprojectedtosurge2-3metersby2300andby5-7meterswithfasterglobalwarming.By2100,once-in-a-centurycoastalfloodeventswilloccuratleastonceperyearatmorethanhalfofcoastlinesacrosstheglobe.Widespreadflooding.Climatechangeisintensifyingtheriskoffloodsaswellasdroughts.Whilemoreintenseevaporationwillleadtomoredroughts,warmeraircanproduceextremerainfall.Onaverage,thefrequencyofheavydownpourshasalreadyincreasedbyabout30percentandtheycontainabout7percentmorewater.Extremeheatwaves.Extremeheatwaves,suchasthedeadlyonethatoccurredinmanypartsofNorthAmericainsummer2021,arealreadyaboutfivetimesmorelikelytooccurwithexistingwarmingof1.2°C.Withglobalwarmingof2°C,thisfrequencyincreasesto14timesaslikelytooccur.Heatwavesaregettinghotter,andwith2°Cofglobalwarming,thehottesttemperatureswouldreachnearly3°Chigherthanpreviousheatwaves.Severedroughts.Climatechangeisincreasingthefrequencyandseverityofdroughts.Severedroughtsthatusedtohappenatanaverageofonceperdecadearenowoccurringabout70percentmorefrequently.Ifglobalwarmingreaches2°Cabovethepreindustrialaverage,severedroughtswilloccurbetweentwoandthreetimesasoften.Weatherwhiplash.Climatechangeisnotjustincreasingtheseverityofextremeweatherevents,butitisalsointerruptingthenaturalpatternsandcreatinga“weatherwhiplash”—wildswingsbetweendryandwetextremes—destructivefloodsinoneyearandextremedroughtsinthenext.Source:IPCC(2021).7III.DATAOVERVIEWANDSTYLIZEDFACTSThispaperusesanunbalancedpaneldatasetofannualobservationscovering39countriesinEuropeduringtheperiod1980–2019.TheseriesaredrawnfromtheIMF’sInternationalFinancialStatisticsandWorldEconomicOutlookdatabases,theWorldBank’sWorldDevelopmentIndicatorsdatabase,theU.S.EnergyInformationAdministration,andtheInternationalCountryRiskGuide.Summarystatistics,presentedinTable1,indicatelargevariationsinenvironmentaloutcomesintermsofCO2emissionsinmetrictonspercapita2andenergysecurityasmeasuredbytheratioofnetenergyimportstoGDP.Themainexplanatoryvariablesofinterestareenergyefficiency(orintensity)asmeasuredbyenergyconsumptionperunitofrealGDP3andtheshareofnuclear,renewableandothernon-hydrocarbonsourcesofenergy,whichshowconsiderableheterogeneityacrosscountriesandovertime.Followingtheliterature,Iintroduceasetofcontrolvariables,includingrealGDPpercapita,tradeopennessasmeasuredbytheshareofinternationaltradeinGDP,population,theshareofurbanpopulationintotal,andameasureofinstitutionalquality.Itisnecessarytoanalyzethetime-seriespropertiesofthedatatoavoidspuriousresultsbyconductingpanelunitroottests.ThestationarityofallvariablesarecheckedbyapplyingtheIm-Pesaran-Shin(2003)andtheKaravias-Tzavalis(2014)tests,whicharewidelyusedintheempiricalliteraturetoconductapanelunitroottest(withstructuralbreaksinthecaseoftheKaravias-Tzavalis(2014)procedure).Theresults,availableuponrequest,indicatethatthevariablesusedintheanalysisarestationaryafterlogarithmictransformationoruponfirstdifferencing.Table1.SummaryStatisticsThereisconsiderableheterogeneityinthevulnerabilitytoclimatechangeamongEuropeancountries.AspresentedinFigure3,somecountriesinEuropearealmosttwiceas2CO2emissionsrepresentmorethan80percentofgreenhousegasemissionsinEurope.3Whileenergyintensitymeasuresthequantityofenergyrequiredperunitoutputattheaggregatelevel,energyefficiencymeasurestheamountofenergyusedatthedisaggregatedlevelinindividualactivities.Inthispaper,IusethesetermsinterchangeablytocapturetheamountofenergyusedtoproduceaunitofrealGDPinapanelofcountries.AspresentedinthechartsinFigure3,alowerreadingofenergyconsumptionperunitofrealGDPimpliesahigherlevelofenergyefficiency(orintensity).VariableObs.MeanStd.Dev.Min.Max.CO2emissionspercapita1,4717.64.10.634.5Netenergyimports1,36634.9106.5-843.5100.0Energyefficiency1,3615.86.61.6166.9Non-hydrocarbonenergy1,41752.937.50.0100.0RealGDPpercapita1,54425,20421,154619112,373Tradeopenness1,49296.052.713.4380.1Population1,84517,700,00028,200,00021,453149,000,000Urbanization1,80469.714.733.898.1Bureaucraticquality1,2753.11.00.04.0Source:EIA;IMF;WorldBank;author'scalculations.8vulnerabletothreatsassociatedwithclimatechangethanothers.Furthermore,thereisasignificantrelationshipbetweenclimatechangevulnerabilityandresilience.Countrieswithgreatervulnerabilityalsotendtobelessresilienttoclimatechange,accordingtotheND-GAINindices.Inthemeantime,theevolutionofCO2emissionsshowsEurope’sgreaterprogressrelativetotherestoftheworld.Thereisacleardownwardtrendsince1980bothinadvancedanddevelopingEuropeancounties.However,theprevailingtrendinCO2emissions,especiallyonapercapitabasis,isstillnotconsistentwiththepathwaytonetzeroemissionsby2050.ThisislargelyduetoEurope’sdependenceonhydrocarbonsasamajorsourceofenergysource,evenFigure3.ClimateVulnerability,CO2Emissions,EnergyEfficiencySource:ND-GAIN;EIA;WorldBank;author’scalculations.SRBMDAALBROULVAUKRHRVBIHLTUMKDMNESVKHUNCYPESTBGRNLDRUSBLRBELMLTPRTGRCPOLIRLISLITASVNCZEFRALUXGBRDEUFINAUTCHENOR0.20.30.40.50.60.70.80.90.20.250.30.350.40.45ClimateResilienceClimateVulnerabilityClimateResiliencevs.Vulnerability,2019050001000015000200002500030000350004000019801983198619891992199519982001200420072010201320162019WorldEuropeCarbonEmissions(Millionmetrictonnes)02468101219601963196619691972197519781981198419871990199319961999200220052008201120142017WorldEuropeCarbonEmissions(Metrictonspercapita)0246810121419801983198619891992199519982001200420072010201320162019WorldEuropeAverageEnergyEfficiency(1000Btu/2015$GDPPPP)012345678910RUSUKRMLTSRBBLRNORBIHBGRBELFINMDACZESWENLDMNESVKGRCSVNPOLMKDLVALTUESTEnergyEfficiency:2019(1000Btu/2015$GDPPPP)0.000.050.100.150.200.250.300.350.400.45SRBMDAALBROULVAUKRHRVBIHLTUMKDMNESVKHUNCYPESTBGRNLDRUSBLRBELMLTPRTGRCPOLIRLISLITASVNCZEFRALUXGBRDEUFINAUTCHENORClimateVulnerability,20199astheshareofnon-hydrocarbonenergycontinuestoincreaseacrossthecontinent.Animportantconsiderationwiththeenergymixisheavyrelianceonimports,whichaccountforover60percentofallformsofenergyandasmuchas90percentinthecaseofnaturalgas.Inthiscontext,energyefficiencyisacriticalfactorforreducingCO2emissionsandenergyimports.Europehasmadeasignificantprogress—evenmorethantherestoftheworld—inenergyefficiencyandmanagedtoreducetheamountofenergyusedtoproduceaunitofGDPby46.4percentoverthepastfourdecades.Thereis,however,stillconsiderablecross-countryvariation,withtheBalticsleadingtherestinenergyefficiency.IV.CLIMATECHANGEMITIGATIONEuropeancountriesstillhaveampleopportunitiestoreduceCO2emissionsthroughbroad-basedpoliciesandreforms.Inparticular,therearethreekeyareaswheremoreambitiousandcomprehensiveinitiativescouldmakeasignificantcontributiontowardsnet-zeroemissionsthroughoutEurope:(i)eliminatingdistortionaryenergysubsidies;(ii)introducingacarbontaxandfeesonhigh-emissionproductscombinedwithrebatesonlow-emissionproducts;and(iii)improvingenergyefficiencyanddecarbonizingtheenergysector.EnergysubsidiesinEuropecontinuetodistorteconomicincentivesandcontributetoenvironmentaldegradation.SubsidiesonfossilfuelsandelectricityamounttosignificantamountsinsomecountriesinEurope,butthereisconsiderablevariationinthesizeandtypesofenergysubsidies.Fossilfuelsubsidiesarelargerincommodity-richcountries,suchasRussia,whileelectricitysubsidiesaremoreprevalentintherestofthecontinent.4Thewidespreaduseofenergysubsidiesunderminesfiscalsustainability,divertresourcesawayfrommoreproductiveareas(suchaseducationandhealthcare),benefitstherichmorethanthepoor,anddiscouragesefficiencyimprovementsintheenergysector.Consequently,energysubsidieshavebecomeadistortionaryburdenonlong-termeconomicgrowthandtheenvironmentduetooverconsumption.Moreefficientpricingofenergy,ontheotherhand,wouldreduceCO2emissionsbymorethanathirdrelativetothebaselinelevel,keepglobalwarmingbelow1.5°C,raiseadditionalrevenues,andimproveenvironmentalquality(Parry,Black,andVernon,2021).Fiscalpolicymeasures,includingacarbontaxonfossilfuels,arethemostefficienttoolforclimatechangemitigation.Evenamodestcarbonpricecanhelpmobilizeinvestmentinnon-hydrocarbonsourcesofenergy,encouragegreaterenergyefficiency,andtherebyinducesignificantabatementinCO2emissions(IMF,2020b;Blackandothers,2021;Gugler,Haxhimusa,andLiebensteiner,2021;Parry,Black,andRoaf,2021).AslongasCO2emissionsremainfree,thereisnoeffectiveincentivetoalterbehavior.Incontrast,imposingataxonCO2emissionsrelaysapowerfulsignalthroughouttheeconomy.Carbon-intensivegoodsandserviceswouldbecomemoreexpensiveandrebalanceconsumptionpatternstowardlow-carbonoptions.Blackandothers(2021)proposesarangeofcarbontaxesforadvanced,high-incomeemergingmarketsandlow-incomeemergingmarkets—$75,$50and$25permetrictonofCO2emissions,4EvenEUgovernmentsprovided€112billioninsubsidiestotheproductionandconsumptionoffossilfuelsin2021(Nowag,Mundaca,andÅhman,2021).10respectively.5Itisalsonecessarytoconsiderothermeasuressuchas“feebates”—feesonproductswithhighemissionscombinedwithrebatesonproductswithlowemissions—incarbon-intensivesectors.SimulationexercisesconfirmtheeffectivenessofacarbontaxinreducingCO2emissionsinlinewiththeParisAgreement.Thesimulationanalysis,basedontheClimatePolicyAssessmentTool(CPAT)framework(IMF,2019;Parry,Black,andVernon,2021),showsthatfossilfuelsareunderpricedinEuropeancountriesrelativetonegativeexternalities.6Acomprehensivecarbontaxwouldthereforehelpattaintheoptimalpricethattakesintoaccountnegativeexternalitiesandleadstoconvergencetowardstheemissionsreductiontarget.7Table2presentstheimpactofaneconomy-widecarbontaxsettograduallyincreasetoUS$50permetrictonofCO2emissionsby2030.AssumingthatacarbontaxofUS$50permetrictonofCO2emissionsistheonlypolicyinstrumentused,thesimulationresultssuggestthatallBalticcountrieswouldachievereducingGHGemissionsby40percentby2030.Thereis,however,considerablevariationacrosscountries.WhileEstoniaandLatviawouldneedhighercarbontaxestocutemissionsinlinewiththetargets,LithuaniawouldreduceemissionsmorethantargetedwithacarbontaxofUS$50permetricton.Thisvariationintheimpactofacarbontaxreflectscross-countrydifferencesinemission-reductiontargetsandtheexistingenergymix,whichleadtodifferencesintheTable2.ImpactofCarbonTaxintheBalticsandBeyond5Only17percentofemissionsarecoveredbyacarbonprice,whichremainsatanaverageofUS$3permetrictonofCO2emissions.6TheCPATprovidescountry-specificprojectionsoffueluseandCO2emissionsbytheenergy,industrial,transportation,andresidentialsectors.ThemodelisparameterizedusingdatacompiledfromtheIEAonrecentfuelusebycountryandsector.RealGDPprojectionsarefromthelatestIMFforecasts.Dataonenergytaxes,subsidies,andpricesbyenergyproductandcountryiscompiledfrompubliclyavailableandIMFsources,withinputsfromproprietaryandthird-partysources.InternationalenergypricesareprojectedforwardusinganaverageofIEAandIMFprojectionsforcoal,oil,andnaturalgasprices.Assumptionsforfuelpriceresponsivenessarechosentobebroadlyconsistentwithempiricalevidenceandresultsfromenergymodels.7TheBalticsparticipateintheEUEmissionsTradingSystem(ETS),whichcoversonlyabout30percentofnationalCO2emissions.AdditionalFiscalRevenue(percentofGDP)CountryFullrecyclingofcarbontaxNorecyclingofcarbontaxEstonia1.03-0.19-0.57Latvia0.64-0.11-0.35Lithuania0.75-0.13-0.41CzechRepublic1.07-0.20-0.60Germany0.42-0.08-0.23Hungary0.95-0.16-0.52Poland1.38-0.25-0.77Source:Author'scalculations119.8RealGDPGrowthImpact(percentagepoints)CarbonTaxofUS$50by2030ProportionofEmissionsGapNarrowedbyPolicy(percent)29.877.435.540.094.454.6Note:TheimpactofacarbontaxespertonofCO2isdeterminedaccordingtotheCPATframeworkasoutlinedinIMF(2019)andParry,Black,andVernon(2021).11responsivenessofemissionstochangesinfossil-fuelprices.Furthermore,sincetheCPATusespriceelasticityassumptionstodeterminechangestotheenergymix,ifacountryinitiallyhasanexceptionallylowlevelofrenewableenergy,changesinfossil-fuelpriceswillnotelicitalargeincreaseinrenewables.Thus,non-taxpoliciesarenecessarytostimulateinvestmentinalternativesourcesofenergy,andthesepoliciesarenotcoveredintheCPATframework.Theeconomicimpactofacarbontaxvariesfromcountrytocountryaccordingtotheinitialenergymatrixandupstreamlinkagesintheenergysector.SimulationsbasedontheCPATmodelalsoshowthattherewouldbesubstantialrevenuegainsfromtheintroductionofacarbontax,withamoderatenegativeimpactoneconomicgrowth.Thesemacro-fiscaleffectswillvaryfromcountrytocountryaccordingtotheinitialenergymatrixandupstreamlinkagesintheenergysector.Forexample,atUS$50permetrictonofCO2emissions,acarbontaxwouldyieldadditionalrevenueof0.64percentofGDPinLatviaand0.75percentofGDPinLithuaniaandasmuchas1.03percentofGDPinthecaseofEstonia.Theimpactoneconomicgrowth,ontheotherhand,appearstobemoderate(-0.4percentagepointsforLithuania,-0.35forLatviaand-0.6forEstonia)andsmallassumingthatadditionalrevenuesarerecycledbackintotheeconomythroughlowertaxesorhigherinvestmentspending(-0.1percentagepointsinLithuaniaandLatviaand-0.2percentagepointsinEstonia).Furthermore,compensatorypoliciesdesignedtorecycleadditionalrevenuethroughloweringothertaxesandincreasingtargetedcashtransfersandpublicinvestmentcanalleviateadverseeffectsondisposablehouseholdincome.Decarbonizationmuststartintheenergysector,whichisresponsibleforabout80percentofCO2emissionsinEurope.CO2emissionsarearesultof(i)population,(ii)GDPpercapita,(iii)carboncontentofenergyresources,and(iv)energyconsumptionperunitofGDP.ReducingCO2emissionsrequiresthereductionofoneormoreofthesefourfactors,whichimpliesthatpoliciesshouldfocusondecarbonizingtheenergymatrix(lowerCO2emissionsperunitofenergy)andenhancingenergyefficiency(lowerenergyconsumptionperunitofGDP).WhiletheamountofenergyusedtoproduceaunitofGDPdeclinedby55.4percentacrosstheworldoverthepastfourdecadesthankstomoreenergy-efficientproductionprocessesandgreaterenergyefficiencyofconsumergoodsandservices,improvingenergyefficiencyremainsoneofthemostimportantfactorstoreduceCO2emissionsandstrengthenenergysecurity.A.ChangingtheEnergyMatrixIncreasingtheshareofrenewable,nuclearandothernon-hydrocarbonenergyshouldlowerCO2emissionsandstrengthenenergysecurity.ThispaperusesaconceptualframeworkthatrelatestoCO2emissionsandenergysecuritytotechnologicalandregulatoryimprovementsandpolicychoicesasmanifestedinenergyefficiencyandtheshareofnon-hydrocarbonenergy,alongwithmacroeconomicandinstitutionaldeterminants.MovingawayfromfossilfuelscanmakeabigcontributiontoeffortsthroughoutEuropetowardmeetingtheclimatecommitmentsbyreducingCO2emissions.Hence,Iempiricallyinvestigatetheimpactofnuclear,renewableandothernon-hydrocarbonenergyonCO2emissionsinapanelof39countriesinEuropeovertheperiod1980–2019accordingtothefollowingspecification:12𝑦𝑖,𝑡=𝛽1+𝛽2𝐴𝐸𝑖,𝑡+𝛽3𝑋𝑖,𝑡+𝜂𝑖+𝜇𝑡+𝜀𝑖,𝑡where𝑦𝑖,𝑡denotesthelogarithmofCO2emissionsinmetrictonspercapitaorenergysecuritymeasuredbynetenergyimportsasashareofGDPincountryiandtimet;𝐴𝐸𝑖,𝑡istheshareofalternativesourcesofenergyincludingnuclear,renewableandothernon-hydrocarbons;𝑋𝑖,𝑡isavectorofcontrolvariablesincludingthelogarithmofrealGDPpercapita,tradeopenness,thelogarithmofpopulation,theshareofurbanpopulationandameasureofinstitutionalquality,whicharecommonlyusedintheliterature(NarayanandNarayan,2010;PiaggioandPadilla,2012;ÖzbuğdayandErbaş,2015;GökgözandGüvercin,2018;Tajudeen,Wossink,andBanerjee,2018;Xiaandothers,2020;Cevik,2022a;2022b).The𝜂𝑖and𝜇𝑡coefficientsdenotethetime-invariantcountry-specificeffectsandthetimeeffectscontrollingforcommonshocksthatmayaffectCO2emissionsandenergysecurityacrossallcountriesinagivenyear,respectively.𝜀𝑖,𝑡istheerrorterm.Toaccountforpossibleheteroskedasticity,robuststandarderrorsareclusteredatthecountrylevel.Estimationresults,presentedinTable3,confirmthattheshiftawayfromhydrocarbonsourcesofenergyhelpsreduceCO2emissionsandbolstersenergysecurity.Theestimatedcoefficientonnon-hydrocarbonenergyishighlysignificant.InthecaseofallEuropeancountries,a10percentagepointincreaseintheshareofnon-hydrocarbonenergyisassociatedwithlowerCO2emissionsof3percentagepointsinthelongrun,aftercontrollingforeconomic,demographic,andinstitutionalTable3.Non-HydrocarbonEnergy,CO2EmissionsandEnergySecurityAllAEsEMsAllAEsEMsNon-hydrocarbonenergy-0.003-0.001-0.012-0.006-0.003-0.022[0.002][0.001][0.002][0.005][0.002][0.012]RealGDPpercapita0.6180.4190.6890.4470.2291.733[0.117][0.105][0.169][0.310][0.344][0.731]Tradeopenness-0.001-0.001-0.0010.0010.0010.005[0.001][0.001][0.001][0.001][0.002][0.004]Population0.6630.3762.007-0.125-0.1292.176[0.348][0.167][0.298][0.620][0.712][1.483]Urbanization0.0050.0080.0030.0460.0570.052[0.008][0.006][0.008][0.024][0.031][0.073]Bureaucraticquality0.0480.1430.0200.0620.0170.272[0.056][0.048][0.066][0.078][0.098][0.193]Numberofobservations1,145823322874640234Numberofcountries392712372611CountryFEYesYesYesYesYesYesYearFEYesYesYesYesYesYesAdjR20.410.560.780.450.460.44Source:Author'sestimations.CO2EmissionsEnergyImportsNote:Thedependentvariableiscarbonemissionsinmetrictonspercapitaandenergysecurityasmeasuredbytheshareofnetenergyimportsintotalenergyuse.Robuststandarderrors,clusteredatthecountrylevel,arereportedinbrackets.Aconstantisincludedineachregression,butnotshowninthetable.,,anddenotesignificanceatthe10%,5%,and1%levels,respectively.13factors.8ThemagnitudeofthiseffectisevengreateramongemergingEuropeancountries,withacoefficientof-0.012comparedto-0.001inadvancedEuropeaneconomies.Theanalysisalsoshowsthatreducingrelianceonhydrocarbon-basedenergyhasahighlysignificanteffectonenergysecurity.Forthefullsampleofcountries,a10percentagepointincreaseintheshareofnon-hydrocarbonenergyisassociatedwithareductionof6percentagepointsinenergyimports,aftercontrollingforconventionalfactors.Themagnitudeofthiseffectissignificantlygreaterwithacoefficientof-0.022amongemergingEuropeancountriescomparedto-0.003inadvancedeconomies.Allinall,theseempiricalfindingsconfirmthatdecarbonizationnotonlyhasacentralroleinmitigatingCO2emissions,butalsoinbolsteringenergysecuritythroughoutEurope.B.ImprovingEnergyEfficiencyGreaterenergyefficiencybringsasignificantreductioninCO2emissionsandstrengthensenergysecurity.Improvingenergyefficiency—measuredasenergyintensityofeconomicactivity—canmakeabigcontributiontoeffortsthroughoutEuropetowardmeetingtheclimatecommitmentsbyreducingCO2emissionspercapita.ThereisanecdotalevidenceindicatingthatcountrieswithgreaterenergyefficiencytendtohavelowerenergyimportsandCO2emissions,aswellaslowerenergycostforconsumers.Accordingly,thispaperalsoinvestigatestheimpactofenergyefficiencyonCO2emissionsandenergysecurity,asdefinedabove,inapanelof39countriesinEuropeovertheperiod1980–2019,employingthefollowingspecification:𝑦𝑖,𝑡=𝛽1+𝛽2𝐸𝐸𝑖,𝑡+𝛽3𝑋𝑖,𝑡+𝜂𝑖+𝜇𝑡+𝜀𝑖,𝑡where𝑦𝑖,𝑡denotesthelogarithmofCO2emissionspercapitaornetenergyimportsasashareofGDPincountryiandtimet;𝐸𝐸𝑖,𝑡isenergyefficiencyasmeasuredbythelogarithmofenergyconsumptionperunitofrealGDP;𝑋𝑖,𝑡isavectorofcontrolvariablesincludingthelogarithmofrealGDPpercapita,tradeopenness,thelogarithmofpopulation,theshareofurbanpopulation,andameasureofinstitutionalquality.Asabove,the𝜂𝑖and𝜇𝑡coefficientsdenotethetime-invariantcountry-specificeffectsandthetimeeffectscontrollingforcommonshocksthatmayaffectCO2emissionsandenergysecurityacrossallcountries,respectively.𝜀𝑖,𝑡istheerrorterm.Toaccountforpossibleheteroskedasticity,robuststandarderrorsareclusteredatthecountrylevel.Estimationresults,presentedinTable4,confirmthatimprovingenergyefficiencyreducesCO2emissionsandstrengthensenergysecurity.Theestimatedcoefficientonenergyefficiencyiseconomicallyandstatisticallyhighlysignificant.Broadlyinlinewithpreviousstudies,a10percentagepointincreaseinenergyefficiencyisassociatedwithlowerCO2emissionsof8.8percentagepointsandenergyimportsofabout2percentoverthelongrun,aftercontrollingforeconomic,demographic,andinstitutionalfactors.Theseeffectsofenergyefficiencyaresignificantacrossallcountrygroups,butappeartobestrongeramongadvancedeconomies,whichcouldreflectgreaterefficiencygainsinadvancedeconomiesinthepast.Nevertheless,thesefindingsindicatethatimprovingenergyefficiencycanplayafundamentalroleinmitigatingCO2emissionsandstrengtheningenergysecuritybyreducingdependenceonimportedsourcesofenergy.Therefore,to8Theestimatedcoefficientsoncontrolvariableshavetheexpectedsignsandsomearealsostatisticallysignificant.14decarbonizeeconomicactivity,policiesandreformsshouldaimtoimproveenergyefficiencyincommercialandresidentialuseasmuchasshiftingtheenergymatrixawayfromfossilfuels.Table4.EnergyEfficiency,CO2EmissionsandEnergySecurityV.CLIMATECHANGEADAPTATIONEuropeancountriesneedtomainstreamclimatechangeadaptationintodevelopmentplanstobecomemoreresilient.Long-termrisksassociatedwithclimatechangecannotbecompletelyeliminated,whichmeansgovernmentmusttakedecisiveactiontostrengthenphysical,financial,institutionalandsocialresilience.Avarietyofadaptationmeasureshavebeenintroducedtoenhanceresiliencetoclimatechange,buttherearestillsignificantgapsthatkeeptheregionvulnerabletothreatsassociatedwithclimatechange.Enhancingstructuralresiliencerequiresinfrastructureandotherex-anteinvestmentstolimittheimpactofdisasters,including“hard”policymeasures(e.g.,upgradingpublicinfrastructure),and“soft”measures(e.g.developingearlywarningsystemsandstrengtheningzoningandbuildingcodes);buildingfinancialresilienceinvolvescreatingfiscalbuffersandusingprearrangedfinancialinstrumentstoprotectfiscalsustainabilityandmanagerecoverycosts;andpost-disasterandsocialresiliencerequirescontingencyplanningandrelatedinvestmentsensuringaspeedyresponsetoadisaster.Thereareupfrontfiscalcostsofclimatechangeadaptationbutinvestinginstructuralresiliencewouldyieldlong-runbenefits.Althoughclimatechangeadaptationhassignificantupfrontcosts,thelackofinactionontheclimatefrontwouldhaveanevengreatercostforAllAEsEMsAllAEsEMsEnergyefficiency-0.088-0.121-0.046-0.019-0.047-0.013[0.015][0.013][0.014][0.040][0.038][0.049]RealGDPpercapita0.8750.8600.6780.4020.1931.663[0.106][0.124][0.163][0.305][0.330][0.763]Tradeopenness-0.001-0.000-0.0020.0010.0010.006[0.001][0.001][0.001][0.001][0.002][0.005]Population0.0040.3011.0650.3650.5002.096[0.237][0.214][0.273][0.513][0.684][1.901]Urbanization0.0060.0050.0050.0440.0570.064[0.005][0.004][0.008][0.023][0.030][0.067]Bureaucraticquality0.0280.0760.0150.0540.0280.282[0.031][0.039][0.050][0.076][0.082][0.228]Numberofobservations1,143825318880646234Numberofcountries382612362511CountryFEYesYesYesYesYesYesYearFEYesYesYesYesYesYesAdjR20.620.670.740.450.460.39Source:Author'sestimations.CO2EmissionsEnergyImportsNote:Thedependentvariableiscarbonemissionsinmetrictonspercapitaandenergysecurityasmeasuredbytheshareofnetenergyimportsintotalenergyuse.Robuststandarderrors,clusteredatthecountrylevel,arereportedinbrackets.Aconstantisincludedineachregression,butnotshowninthetable.,,anddenotesignificanceatthe10%,5%,and1%levels,respectively.15generations.Furthermore,investinginclimate-resilientinfrastructurewouldreducedamagefromnaturaldisastersandincreaseexpectedreturnstoprivateinvestmentandoutput.Well-designedpolicymeasurescouldalsohavesustainedexpansionaryeffectsthroughhighergrowthinemploymentandwagesandlowermigration,whichtendstooccurincountriesthataremorevulnerabletoclimate-relatednaturaldisasters.Nature-basedsolutionsareessentialinthefightagainstclimatechangeandcouldalsocontributetothedevelopmentofnewbusinessopportunities.Thereisgrowingrecognitionthatclimatechangeiscausingbiodiversitylossacrosstheworld,whilenaturehasafundamentalroleinclimatechangemitigationandadaptation(IPBES,2019).Inviewoftheseinterlinkages,nature-basedsolutions—designedtoprotect,sustainablymanageandrestorenaturalecosystems—canbecomehighlyeffectiveinprovidingeconomicwell-beingaswellasgreaterbiodiversitybenefits.Inparticular,nature-basedsolutionscanbeappliedtoaddressarangeofclimaterisks,includingcoastalhazards,floodsandsoilerosion,andrisingtemperaturesanddrought(Kaposandothers,2019).Anotherimportantadvantageofnature-basedsolutionsforadaptationisthecost,whichtendstobesignificantlylessthantraditionalinfrastructureforaddressingclimatehazards(Narayanandothers,2016;Regueroandothers,2020)andgeneratesubstantialeconomicandsocialbenefits(Rizvi,2014;Menéndezandothers,2020;Seddonandothers,2020).Financingclimatechangemitigationandadaptationeffortswillrequiremobilizingadditionalresourcesandreformingpublicfinancialmanagement.Adaptingtoclimatechangeisnotcheap,anditwillrequiresubstantialamountofadditionalupfrontresourcestoinvestinphysicalinfrastructureandotherkeyareastoincreaseresilienceandlessenthemacro-financialimpactofclimatechange.Inthiscontext,greenfinancingcouldprovidevaluableresourcesforsustainableinvestmentprojects.Thesustainability-linkeddebtmarkethasreachedUS$2.5trillionwithnetnewissuanceofUS$660billionin2020.Themostsignificantcomponentofthismarketintermsofsizeandenvironmentalimpactisgreenbondsthatareusedtofinanceprojectstofacilitateclimatechangeadaptationandmitigation.Despiteitsrapidgrowth,however,sovereigngreenbondsremainsmall—about1percent—comparedtotraditionaldebtinstrumentsissuedbygovernments.Countrieswithsignificantclimate-relatedinvestmentneedsmustimprovetheinstitutionalframework,includingrobustandtransparentpublicfinancialmanagementsystemsandprocesses,togainfullaccesstotheglobalflowofgreenfinancing(Mejía-Escobar,González-Ruiz,andFranco-Sepúlveda,2021).VI.CONCLUSIONEuropeisfacingthedoublejeopardyofclimatechangeandenergyinsecurity,withfar-reachingeconomicandfinancialrepercussions.Theglobalaveragesurfacetemperaturehasalreadyincreasedbyabout1.1degrees°Ccomparedwiththepreindustrialaverage,whichamplifiesthefrequencyandseverityofclimateshocksacrosstheworld.WithinEurope,theBalticSearegionisparticularlyvulnerabletoglobalwarmingcausedbyclimatechange,withanannualwarmingtrendtwiceasmuchastheglobalaverage.Atthesame,theexplosionofgeopoliticaltensionstriggeredbyRussia’sinvasionofUkrainehasunsettledglobalenergymarkets.Whileitisstilltooearlytoknowhoweventsmightunfold,thecrisiswilllikelyresultinlong-lastingchanges16inenergysupplynetworksandenergysourcesinthegenerationofelectricity.Thisiswhyaddressingclimatechangeandstrengtheningenergysecurityarethetwofacesofthesamecoin.PoliciesandstructuralreformsaimedatreducingdependenceonfossilfuelswoulddelivernotonlyasignificantreductioninCO2emissions,butalsohelpimproveenergysecuritythroughoutEurope.Well-designedpoliciesandstructuralreformswouldhelpreduceCO2emissionsandstrengthenenergysecurity.Toguardagainstthreatsassociatedwithclimatechange,countriesneedtoproceedontwofronts:(i)climatemitigation,whichreferstopoliciesthathelpreduceCO2emissionsand(ii)climateadaptation,whichreferstoeffortstoadapttotheeffectsofclimatechangeincludingthroughminimizingdamagesfromclimate-relateddisastersaswellastoadapttotheeffectsofeconomictransformations.Usingapanelof39countriesinEuropeovertheperiod1980–2019,theempiricalanalysispresentedinthispaperindicatesthatincreasingtheshareofnuclear,renewables,andothernon-hydrocarbonenergyandimprovingenergyefficiencycouldleadtoasignificantreductioninCO2emissionsandimproveenergysecuritythroughoutEurope.9Fromarisk-rewardperspective,thebenefitsofreducingtherisksofclimatechangeandstrengtheningenergysecurityclearlyoutweighthepotentialcostofmitigationpoliciesintheshortrun.Environmentaltaxes,includingacomprehensive,economy-widecarbontaxonfossilfuels,couldalsoraiseconsiderablerevenues,whichcanexpandthepost-pandemicfiscalspaceandprovideadditionalfundingtocompensatethemostvulnerablehouseholds,buildamultilayeredsafetynet,andstrengthenstructuralresilience.Europeancountriesmustmainstreamadaptationintodevelopmentplanstostrengthenresilienceagainstclimatechange.Long-termclimateriskscannotbecompletelyeliminated,andthusgovernmentsmusttakedecisiveactiontostrengthenphysical,financial,institutionalandsocialresilience.AvarietyofadaptationmeasureshavebeenintroducedtoenhanceresiliencetoclimatechangethroughoutEurope,buttherearestillsignificantgapsthatkeepsomecountries,suchastheBaltics,morevulnerabletothreatsassociatedwithclimatechange.Enhancingstructuralresiliencerequiresinfrastructureandotherex-anteinvestmentstolimittheimpactofdisasters,whilebuildingfinancialresilienceinvolvescreatingfiscalbuffersandusingprearrangedfinancialinstrumentstoprotectfiscalsustainabilityandmanagerecoverycosts.Thesemeasureswillhaveupfrontfiscalcosts,butthelackofinactionontheclimatefrontwouldhaveanevengreatercostforgenerations.Furthermore,strengtheningphysicalandfinancialresiliencewouldreducedamagesfromclimatechangeandincreaseexpectedreturnstoprivateinvestmentandoutput.9Therearealsostudiesshowingthatincreasingtheshareofrenewablesourcesofenergyhasapositiveeffectoneconomicgrowth(NarayanandDoytch,2017;DoytchandNarayan,2021).REFERENCESAckerman,F.,2017,Worst-CaseEconomics:ExtremeEventsinClimateandFinance(NewYork:AnthemPress).Ahola,M.,andothers,2021,“ClimateChangeintheBalticSea:2021FactSheet,”BalticSeaEnvironmentProceedings(BSEP)No.180(Helsinki:HelsinkiCommission).Acevedo,S.,M.Mrkaic,N.Novta,E.Pugacheva,andP.Topalova(2018)“TheEffectsofWeatherShocksonEconomicActivity:WhatAretheChannelsofImpact?”IMFWorkingPaperNo.18/144(Washington,DC:InternationalMonetaryFund).Batten,S.,R.Sowerbutts,andM.Tanaka,2016,“Let'sTalkAbouttheWeather:TheImpactofClimateChangeonCentralBanks,”BankofEnglandStaffWorkingPaperNo.603(London:BankofEngland).Battiston,S.,andothers,2017,“AClimateStress-TestoftheFinancialSystem,”NatureClimateChange,Vol.7,pp.283–288.Benzie,M.,andothers,2021,“Cross-BorderClimateChangeImpacts:ImplicationsfortheEuropeanUnion,”RegionalEnvironmentalChange,Vol.19,pp.763–776.Black,S.,andothers,2021,“NotonTracktoNet-Zero:TheUrgentNeedforGreaterAmbitionandPolicyActiontoAchievetheParisAgreement’sGoals,”IMFStaffClimateNoteNo.21/5(Washington,DC:InternationalMonetaryFund).Burke,M.,andV.Tanutama(2019)“ClimaticConstraintsonAggregateEconomicOutput,”NBERWorkingPaperNo.25779(Cambridge,MA:NationalBureauofEconomicResearch).Caldecott,B.,2018,StrandedAssetsandtheEnvironment:Risk,ResilienceandOpportunity,(London:Routledge).Campiglio,E.,andothers,2018,“ClimateChangeChallengesforCentralBanksandFinancialRegulators,”NatureClimateChange,Vol.8,pp.462–468.Carter,T.,andothers,2021,“AConceptualFrameworkforCross-BorderImpactsofClimateChange,”GlobalEnvironmentalChange,Vol.69,pp.102307.Cevik,S.,2022a,“WaitingforGodot?TheCaseforClimateChangeAdaptationandMitigationinSmallIslandStates,”JournalofEnvironmentalEconomicsandPolicy,DOI:10.1080/21606544.2022.2049372.Cevik,S.,2022b,“DirtyDance:TourismandEnvironment,”InternationalReviewofAppliedEconomics,DOI:.Cevik,S.,andJ.Jalles,2020,“FeelingtheHeat:ClimateShocksandCreditRatings,”IMFWorkingPaperNo.20/286(Washington,DC:InternationalMonetaryFund).Cevik,S.,andJ.Jalles,2021,“AnApocalypseForetold:ClimateShocksandSovereignDefaults,”OpenEconomiesReview,Vol.3,pp.89–108.Cevik,S.,andJ.Jalles,2022,“ThisChangesEverything:ClimateShocksandSovereignBonds,”EnergyEconomics,Vol.107,pp.105856.Dell,M.,B.Jones,andB.Olken(2012)“TemperatureShocksandEconomicGrowth:EvidencefromtheLastHalfCentury,”AmericanEconomicJournal:Macroeconomics,Vol.4,pp.66–95.18Doytch,N.,andS.Narayan,2021,“DoesTransitioningTowardsRenewableEnergyAccelerateEconomicGrowth?AnAnalysisofSectoralGrowthforaDynamicPanelofCountries,”Energy,Vol.235,pp.121290.Feng,A.,H.Li,andA.Prasad,2021,“WeAreAllintheSameBoat:Cross-BorderSpilloversofClimateRiskthroughInternationalTradeandSupplyChain,”IMFWorkingPaperNo.21/13(Washington,DC:InternationalMonetaryFund).Gallup,J.,J.Sachs,andA.Mellinger(1999)“GeographyandEconomicDevelopment,”InternationalRegionalScienceReview,Vol.22,pp.179–232.Gökgöz,F.,andM.Güvercin,2018,“EnergySecurityandRenewableEnergyEfficiencyinEU,”RenewableandSustainableEnergyReviews,Vol.96,pp.226–239.Gugler,K.,A.Haxhimusa,andM.Liebensteiner,2021,“EffectivenessofClimatePolicies:CarbonPricingvs.SubsidizingRenewables,”JournalofEnvironmentalEconomicsandManagement,Vol.106,pp.102405.Im,K.,M.Pesaran,andY.Shin,2003,“TestingforUnitRootsinHeterogeneousPanels,”JournalofEconometrics,Vol.115,pp.53–74.InternationalMonetaryFund(IMF),2019,“FiscalPoliciesforParisClimateStrategies—FromPrincipletoPractice,”IMFPolicyPaper(Washington,DC:InternationalMonetaryFund).InternationalMonetaryFund(IMF),2020a,“PhysicalRiskandEquityPrices,”GlobalFinancialStabilityReport,Chapter5,April2020(Washington,DC:InternationalMonetaryFund).InternationalMonetaryFund(IMF),2020b,“MitigatingClimateChange,”WorldEconomicOutlook,Chapter3,October2020(Washington,DC:InternationalMonetaryFund).IntergovernmentalScience-PolicyPlatformonBiodiversityandEcosystemServices(IPBES),2019,GlobalAssessmentReportonBiodiversityandEcosystemServicesoftheIntergovernmentalScience-PolicyPlatformonBiodiversityandEcosystemServices,editedbyBrondizio,E.,J.Settele,S.Díaz,andH.Ngo(Bonn:IntergovernmentalScience-PolicyPlatformonBiodiversityandEcosystemServices).IntergovernmentalPanelonClimateChange(IPCC),2007,FourthAssessmentReport,IntergovernmentalPanelonClimateChange(NewYork:CambridgeUniversityPress).IntergovernmentalPanelonClimateChange(IPCC),2014,ClimateChangein2014:MitigationofClimateChange.WorkingGroupIIIContributiontotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange(NewYork:CambridgeUniversityPress).IntergovernmentalPanelonClimateChange(IPCC),2019,IPCCSpecialReportontheOceanandCryosphereinaChangingClimate,editedbyH.-O.Pörtner,D.Roberts,V.Masson-Delmotte,P.Zhai,M.Tignor,E.Poloczanska,K.Mintenbeck,A.Alegría,M.Nicolai,A.Okem,J.Petzold,B.Rama,andN.Weyer(NewYork:CambridgeUniversityPress).IntergovernmentalPanelonClimateChange(IPCC),2021,ClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange[Masson-Delmotte,V.,P.Zhai,A.Pirani,S.L.Connors,C.Péan,S.Berger,N.Caud,Y.Chen,L.Goldfarb,M.I.Gomis,M.Huang,K.Leitzell,E.Lonnoy,J.B.R.Matthews,T.K.Maycock,T.Waterfield,O.Yelekçi,R.YuandB.Zhou(eds.)](NewYork:CambridgeUniversityPress).InPress.19Kahn,M.,K.Mohaddes,R.Ng,M.Pesaran,M.Raissi,andJ-C.Yang(2019)“Long-TermMacroeconomicEffectsofClimateChange:ACross-CountryAnalysis,”IMFWorkingPaperNo.19/215(Washington,DC:InternationalMonetaryFund).Kapos,V.,andothers,2019,TheRoleoftheNaturalEnvironmentinAdaptation(Washington,D.C.:GlobalCommissiononAdaption).Karavias,Y.,andE.Tzavalis,2014,“TestingforUnitRootsinShortPanelsAllowingforaStructuralBreak,”ComputationalStatistics&DataAnalysis,Vol.76,pp.391–407.Kunreuther,H.,andE.Michel-Kerjan,2007,“ClimateChange,InsurabilityofLarge-scaleDisastersandtheEmergingLiabilityChallenge,”NBERWorkingPaperNo.12821(Cambridge,MA:NationalBureauofEconomicResearch).Meier,H.,andothers,2022,”ClimateChangeintheBalticSeaRegion:ASummary,”EarthSystemDynamics,Vol.13,pp.457–593.Mejía-Escobar,J.,J.González-Ruiz,andG.Franco-Sepúlveda,2021,“CurrentStateandDevelopmentofGreenBondsMarketintheLatinAmericaandtheCaribbean,”Sustainability,Vol.13,10872.Menéndez,P.,andothers,2020,“TheGlobalFloodProtectionBenefitsofMangroves,”ScientificReports,Vol.10,pp.3–11.Monasterolo,I.2020,“ClimateChangeandtheFinancialSystem,”AnnualReviewofResourceEconomics,Vol.12,pp.1–22.Narayan,P.,andS.Narayan,2010,“CarbonDioxideEmissionsandEconomicGrowth:PanelDataEvidencefromDevelopingCountries,”EnergyPolicy,Vol.38,pp.661–666.Narayan,S.,andothers,2016,“TheEffectiveness,CostsandCoastalProtectionBenefitsofNaturalandNature-BasedDefenses,”PLoSONE,Vol.11,e0154735.Narayan,S.,andN.Doytch,2017,“AnInvestigationofRenewableandNon-RenewableEnergyConsumptionandEconomicGrowthNexusUsingIndustrialandResidentialEnergyConsumption,”EnergyEconomics,Vol.68,pp.160-176.Nowag,J.,L.Mundaca,andM.Åhman,2021,“PhasingOutFossilFuelSubsidiesintheEU?ExploringtheRoleofStateAidRules,”ClimatePolicy,Vol.21,pp.1037-1052.Özbuğday,F.,andB.Erbaş,2015,“HowEffectiveAreEnergyEfficiencyandRenewableEnergyinCurbingCO2EmissionsintheLongRun?AHeterogeneousPanelDataAnalysis,”Energy,Vol.82,pp.734–745.Parry,I.,S.Black,andN.Vernon,2021,“StillNotGettingEnergyPricesRight:AGlobalandCountryUpdateofFossilFuelSubsidies,”IMFWorkingPaperNo.21/236(Washington,DC:InternationalMonetaryFund).Parry,I.,S.Black,andJ.Roaf,2021,“AProposalforanInternationalCarbonPriceFloorAmongLargeEmitters,”IMFStaffClimateNoteNo.21/001(Washington,DC:InternationalMonetaryFund).Piaggio,M.,andE.Padilla,2012,”CO2EmissionsandEconomicActivity:HeterogeneityAcrossCountriesandNon-StationarySeries,”EnergyPolicy,Vol.46,pp.370–381.20Pointner,W.,andD.Ritzberger-Grünwald,2019,"ClimateChangeasaRisktoFinancialStability,"FinancialStabilityReport(Vienna:AustrianCentralBank).Ramírez,L.,J.Thomä,andD.Cebreros,2020,“TransitionRisksAssessmentbyLatinAmericanFinancialInstitutionsandtheUseofScenarioAnalysis,”TechnicalNoteNo.IDB-TN-195(Washington,DC:Inter-AmericanDevelopmentBank).Reguero,B.,andothers,2020,“FinancingCoastalResiliencebyCombiningNature-BasedRiskReductionwithInsurance,”EcologicalEconomics,Vol.169,106487.Rizvi,A.,2014,NatureBasedSolutionsforHumanResilience:AMappingAnalysisofIUCN’sEcosystemBasedAdaptationProjects(Washington,D.C.:InternationalUnionforConservationofNature).Seddon,N.,andothers,2020,“UnderstandingtheValueandLimitsofNature-BasedSolutionstoClimateChangeandOtherGlobalChallenges,”PhilosophicalTransactionsoftheRoyalSocietyB,Vol.375,20190120.Tajudeen,I.,A.Wossink,andP.Banerjee,“HowSignificantisEnergyEfficiencytoMitigateCO2Emissions?EvidencefromOECDCountries,”EnergyPolicy,Vol.72,pp.200–221.Xia,Q.,andothers,2020,“DriversofGlobalandNationalCO2EmissionsChanges2000–2017,”ClimatePolicy,Vol.21,pp.604–615.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱