OnbehalfofGIZinChina2020AnalysisandassessmentofenergyefficiencyinautomatedcontainerterminalsPublicationDataPublishedby:DeutscheGesellschaftfürInternationaleZusammenarbeit(GIZ)GmbHRegisteredoffices:BonnandEschbornAddressGIZinChina:SunflowerTower,Room1100MaizidianSt.37,ChaoyangDistrict,100125Beijing,PRChinaT+861085275180F+861085275185Etransition-china@giz.org,giz-china@giz.deIgiz.de,Imobility.transitionchina.orgProject:MobilityandFuelsStrategy(MFS)asaContributiontotheTrafficTransitioninChina-PilotprojectintheJing-Jin-JiregionSino-GermanCooperationonMobilityandFuelsStrategy(MFS)asaContributiontotheMobilityandTransportTransitionResponsible:AlexandervonMonschaw,GIZinChinaalexander.monschaw@giz.deAuthor:FrauenhoferIML-AchimKlukas,NilsGastrich,DorotheGörtzLayoutandEditing:ElisabethKaufmann,GIZinChinaPhotocredits:Cover-TimelabPro/unsplash.comURLlinks:Thispublicationcontainsreferencestoexternalwebsi-tes.Therespectiveproviderisalwaysresponsibleforthecontentoftheexternalpageslisted.Whenitwasfirstreferredto,GIZcheckedthethird-partycontenttodeter-minewhetheritmighttriggercivilorcriminalliability.Apermanentcontrolofthecontentofthelinkstoexternalsitesisnotreasonablewithoutconcreteevidenceofanin-fringement.IfGIZdeterminesorisinformedbyothersthatanexternaloffertowhichithasreferredtriggerscivilorcriminalliability,itwillimmediatelyremovethereferencetothisoffer.GIZexpresslydissociatesitselffromsuchcontent.OnbehalfoftheGermanFederalMinistryofTransportandDigitalInfrastructure(BMVI)GIZisresponsibleforthecontentofthispublication.Beijing,2020AnalysisandassessmentofenergyefficiencyinautomatedcontainerterminalsPreface.........................................................................................................................................................................................5Glossary.......................................................................................................................................................................................71.Introduction..........................................................................................................................................................................82.ContainerTerminals.........................................................................................................................................................92.1Definitions..........................................................................................................................................................92.2Keyfunctionsandequipment................................................................................................................92.2.1Functionareasandprocesses..........................................................................................92.2.2TerminalEquipment...............................................................................................................112.3Automationofcontainerterminals.................................................................................................162.3.1Reasonsforautomation.....................................................................................................162.3.2Conditionsandelementsforautomation................................................................172.4TianjinPort.....................................................................................................................................................192.4.1CurrentstatusofTianjinPort.........................................................................................192.4.2TianjinFiveContinentsInternationalContainerTerminal.............................203.Energyefficiencyinautomatedcontainerterminals.................................................................................223.1Emissionssourcesinaportterminal..........................................................................................223.2Energyuseofterminalequipment..................................................................................................253.3Automatedvs.non-automatedcontainerterminals............................................................263.4Reductionmeasures.................................................................................................................................273.4.1Optimisationoftranshipmentprocesses................................................................273.4.2Measuresforinfrastructureandpersonell............................................................293.4.3RecommendationsforTianjinPort...............................................................................304.Conclusionsandrecommendations......................................................................................................................335.References..........................................................................................................................................................................37ContentsPrefaceThestudy“Analysisandevaluationofenergyefficiencyinautomatedcontainerterminals“(Topic1)risingwithinthescopeoftheMKSChinamobilityandfuelstrategyfocusingongreenportswasdevelopedbytheFraunhoferInstituteforMaterialFlowandLogisticsIMLincooperationwiththe‘DeutscheGesellschaftfürInternationaleZusammenarbeit’(GIZ)inChinaandtheTianjinResearchIn-stituteforWaterTransportEngineering(TIWTE).Inparallelthestudies“Shore-to-Shippower“(Topic2)and“Sustainablestrategiesforports“(Topic3)weredeveloped.TheportofTianjinisthemainportoftheBeijingregioninChinaandissituatedapproximately60kmeastofthecityofTianjinonthewesternshoreofBohaiBay.In2018ahandlingcapacityof15.97millionsTEU(TwentyFootEquivalentUnit)wasreached.(TianjinPortDevelopmentHoldingsLimited2019)WithinthelastyeartheTianjinPort(Group)Co.Ltd.finishedformulatingits”Three-yearPlanforConstructionofanIntelligentTianjinPort”.(TJBH2018)Thatcovers29projectsinfivefieldsfocusingonthedevelopmentofaninfor-mation-based,worldwideleading,andmodernportbymodernizationandtrans-formation.Inadditiontoeconomicgoalsalsothoseofsustainabilityshouldbeattained,sothattheportofTianjinisdevelopingnotonlytoanintelligentone,butalsotoagreenone.AgreentransformationisnotnewfortheportofTianjin.Environmentalprotec-tionhadbeenstartedherealreadyinthe1970ies.Inthecourseofthismanyeffortsweremadetoimprovetheenvironmentalqualityoftheport,e.g.byre-alizingthe”GreenWaterProject“aimingonprotectingtheportwatersagainstcontamination.Therealizationofthe“BlueSkyProject“servedtoimprovetheairqualityoftheportaswellastoboostenvironmentalmanagement.5Afeatureof‘intelligent‘portsistheautomationofequipmentintheport.TianjinporthasrecentlybecomethelargestterminalcomplexfortheNavisN4Ter-minalOperatingSystem.ThestandardisationofdataintheN4systemprovidesabasisfortheanalysisoflargedatasetsandsupportsbothplanningandtheautomationofequipmentintheport.6GlossaryACTAutomatedContainerTerminalAGVAutomatedGuidedVehicleALVAutomatedLiftingVehicleCO2CarbondioxideCTContainerTerminalCTAContainerTerminalAltenwerderCTTContainerTerminalTollerortECTEuropeContainerTerminalGHGGreenhouseGasGJGigajouleHHLAHamburgerHafenundLogistikAGICAOInternationalCivilAviationOrganizationIMLFraunhoferInstituteforMaterialFlowandLogisticsIMOInternationalMaritimeOrganizationISOInternationalOrganizationforStandardizationkWhKilowatthourL-FTSLift-FTSLNGLiquefiedNaturalGasMKSMobilityandFuelStrategyMTSMulti-Trailer-SystemNOxNitrousoxideOECDOrganisationforEconomicCooperationandDevelopmentRMGRailMountedGantryCraneRTGRubberTyredGantryCraneSTSShip-to-ShoreCraneTEUTwenty-footEquivalentUnitTIPCTaiwanInternationalPortsCorporationTIWTETianjinResearchInstituteforWaterTransportEngineeringTTUTruck-Trailer-Unit781.IntroductionTheobjectiveofthisstudyistheanalysisofthepotentialforautomationofequipmentandresultingimprovementinenvironmentalimpactinTianjinPort.Thestudyisstructuredasfollows:Af-teradescriptionofthemethod(cf.chapter1)followsadescriptionofthegeneralfeaturesofcontainerterminals,theirfunctionsandequipment.Furthermore,thereasonsforandaspectsofautomation,togetherwiththenecessaryconditionsinthescopeoftheau-tomationimplementationintheterminalsarediscussed.Followingthis,anassessmentandaclassificationofTianjinport‘slevelofauto-mationwasconducted(cf.chapter2).Impactsofautomationontheenergyefficien-cyofcontainerterminalsareanalysed.Auto-matedprocessesincontainerterminalsandtheenergyconsumptionofterminalvehiclesinconventionalandautomatedterminalsareidentifiedandspecified,inconsiderationoftheoptimisationofterminalprocesses,infra-structureandpersonnel.Thelevelofautoma-tionandtheassociatedmeasuresforimpro-vementoftheenvironmentalperformanceoftheTianjinFiveContinentsInternationalCon-tainerTerminalareassessed(cf.chapter3).ThisanalysisandthedatafromTianjinPort/TIWTEareusedtodeveloprecommendationsforequipmentandoptimisationofope-rationsdescribedintheconclusions(cf.chapter4).Figure1visualisestheschematicstructureofthisstudy.Figure1:Schematicstructureofthestudy9Thischapterfirstdefinestheconceptofcont-ainerterminalsingeneralandprovidesastruc-tureintermsofkeyfunctions(cf.chapter2.1).Furthermore,adescriptionofthekeyfunc-tionsandequipment(cf.chapter2.2)followedbyaninspectionoftheautomationofcont-ainerterminalsisconsidered(cf.chapter2.3).Next,anintroductionofTianjinportandtheTianjinFiveContinentsInternationalCont-ainerTerminalispresented(cf.chapter2.4).2.1Definitions38millionISOcontainerscirculatingworld-wide(infurthercourseofthisstudydeclaredascontainers).(Welt2018)In2017,theglobalthroughputofcontainersinportswasgrea-terthan750millionTEU(TEU=twenty-footequivalentunit),anincreaseofmorethan60%inthelast7years.(WorldBank2019)Con-tainersarethemainformofintermodaltrans-portofgoodsandcontainerterminalsthere-forehaveanimportantroleinglobalsupplychains.(Gharehgozlietal.2014)Acontainerterminalinaportisanintermodalsystemofexchangewithastorageareacoordi-natingthearrivalsofgoodsfromseaorland.Theobjectiveofoperationsistoensuretheavailabilityofresourcesandsystemsfortheexchangeofgoodsbetweensea,landandin-landwaterwayswhileoptimisingtimeefficiency,safety,environmentalimpactandtheeconomicsofoperations.(Martín-Soberónetal.2014)Thecorebusinessofacontainerterminalisthetranshipmentofcontainers.Itisahubwheredifferentmodes(ships,inlandwater-waysvessels,trainsandtrucks)meet.Thevari-oustransportmodesdelivercontainerstotheterminaland/orcollectcontainersforonwardshipment.Theclassificationoftranshipmentprocessesisthereforedeterminedbythedirec-tionandmodeoftransport.(Speer2017)Threetypesofterminalcanbeidentified:Transhipment-Terminalsfocusonthetrans-hipmentbetweenships,suchthatthehinter-landisofrelativelylowimportance.Import-Exportterminalsconcentrateoncontainerflowsbetweenshipsandthehinterland.Trans-hipmentbetweenshipsandbetweenlandmo-desisimportantwhereasthetransshipmentispartiallyconductedonshoreaswellasoffsho-re.Intermodalhubsareoftenhubslocatedinthehinterlandthattransfercontainersbet-weenroadandrail.(Speer2017)2.2KeyfunctionsandequipmentAcontainerterminalisanalysedasacomplexsystem,characterisedbyitsfunctions,mainactivitiesandresources.(Kemme2013).Thegeneralstructureandthefunctionsofatermi-nalwillbedescribedtogetherwiththerelevantterminalequipment(cf.chapter2.2.1andchapter2.2.2.)2.ContainerTerminals102.2.1FunctionareasandprocessesContainerterminalshaveatleastthreetypesoffunctionalareas.Thefirstisthewharf(quaysi-de),followedbythelay-downarea(containerholdingandstorage).(Brinkmann2011)Thisstorageareaisusuallydividedintoblocks,rows,fieldsandlevels.Specialareasareprovi-dedforreefersandspecialcontainersthatre-quireelectricalconnections,containdangerousgoods,orareoutsizedcontainersthatcan-notbestackednormally.(Steenkenetal.2004)Thethirdareaisprovidedforhinterlandoperations,in-cludingparkingfortrucksandtrailers,railwaytracks,offices,storageforemp-tycontainersandmain-tenance.Thearrangementandequipmentforthefunctionalareasandtheirinterfacesaredependentonthedesiredthroughputofcontainers,theavaila-bilityoftheareaandthetypeofhinterlandtrans-port.(Brinkmann2011)AtypicallayoutofthesefunctionsisshowninFigure2.Containerterminalopera-tionsinportsaredividedintofiveprocesses.TheseareShip-to-Shore(thearrivalofthecontainerintheshipandunloading),Shore-to-Stack(containertrans-portfromthequaysidetothestoragearea),containerstorage,transportintheterminalandtranshipmentontoothermodesliketrainortruck.(Geerlingsetal.2014)Figure3showsasectionofacontainerterminal.Thefunctio-nalareasareservicedbyvarioustranshipmentandhandlingdevices.Thesearedescribedinchapter2.2.2.Figure2:Generallayoutofacontainerterminal(Brinkmann2011)112.2.2TerminalEquipmentArangeofequipmentisdeployedfortheva-riousfunctionsandprocesses.Theseincludecontainerstackersandtransporters.Theseareusedforloadingandunloadingfromships(verticaltransport),transportbetweenthewharfandstorageareas(horizontaltransport)andstacking(storageequipment).VerticaltransportThisequipmentloadsandunloadscontainersontoandoffshipsandisperformedbygantryorportalcranes,portcranesandmobilecranes.(ClausenundGeiger2013);(Brinkmann2011,2005)Quaysidecranes/gantryorportalcranes:The-secranes(alsocalledship-to-shore-cranes(STS))performthetranshipmentbetweenshipandterminal.Theyareusedinterminalswithahighturnover.Thesegantrycraneshaveaboomthatreachesovertheshipsandtheterminalquayside.Theycanloadandunloadshipsinparallelandmovealongthelengthofthequayandship,withagantryreachtoco-verthewholewidthoftheship.Unloadingisperformedwithaspreader,connectedtothecranegantry,whichgripstheISOcontainercornerblocksandenablesarapidcollectionandreleaseofthecontainer.Theyhaveali-mitedfacilityforcontainerstowageorstorage.(Speer2017;Brinkmann2011,2005)Figure4showsanexampleofcontainerportalcranes.Rotatingmobilecrane:Thesehaveaconsider-ablylowerhandlingratecomparedtogantrycranesandareusedinsmallandmediumsizedterminals.Theiradvantagesarealowercapitalcostandgreaterflexibilitycomparedtogantrycranes.(Brinkmann2005)Figure5showsarotatingmobileharbourcrane.Figure3:Sectionofacontainerterminal(Brinkmann2011)12HorizontaltransportTranshipmentandstorageofgoodsattheterminalisperformedwithstraddlecarriers,truck-trailerandmulti-trailer-systems,con-tainerstackers,reachstackers,autonomoustransportsystemsandtranstainer.(ClausenundGeiger2013;Brinkmann2005)Afterthecontainershavebeenunloadedfromtheship,theyaretransportedtothestoragearea.Theselectedvehiclefortrans-portationvariesstronglydependingontherequirementsandthroughputofthetermi-nal.Therearefourgeneraltypesofvehicles:straddlecarriers,driverlesstransportsystems,truck-trailercombinationsandmulti-trai-ler-systems.Thecontainersarepositionedinthestorageareabyfork-lifttrucksorcranes.(Brinkmann2005)Containertransporterscanalsobedividedintopassiveandactivevehicles.Activevehiclesareequippedwithaliftingdeviceforthecont-ainer(s)toenableindependentloadingandun-loading.Theycombinetransportandstowagefunctions.Passivevehiclescanonlyperformthetransportfunctionandrequirecranesorothercontainerhandlingequipmentforloa-dingandunloading.Liftingatthequaysideisusuallyperformedbythecontainergantrycra-nes,whilearangeofdevicesareusedinstora-geareas.(Kemme2013)Straddlecarrier:TheStraddlecarrierfunctionsindependentlyfromotherhandlingequipmentandhastheabilitytoperformallthefunctionsfortranshipment:transport,stacking,loadingandunloading.Theycanbeconsideredascra-nesthatarenotrestrictedtoalimitedareainFigure4:ContainerportalcranesattheNorthSeaTerminalinBremerhaven(Eurogate2017)Figure5:Rotatingmobilecraneattheinlandwaterwayshar-bourinHamburgHarburg(MetropolregionHamburg2019)13theterminalandhavefreeaccesstothecon-tainers.Straddlecarriersystemsarethereforeflexibleanddynamic.Theyusuallymoveinde-pendentlyasroadvehicleswithtyresandaredimensionedtocarrythreeorfourverticallystackedcontainers.Automatedstraddlecar-riersarealsoknownasautomatedliftingve-hicles(ALV),becauseoftheirliftingfuncti-on.(Steenkenetal.2004)Figure6illustratesastraddlecarrierwithadiagramofastraddlecarrierlayout.Driverlesscontainertransporters/automatedguidedvehicles(AGVs):Theoriginaldevelop-mentofAGVswasnotspecificallyforcont-ainertransport.Therefore,AGVshavematureandreliablesteering,drivetrainandnavigationsystems.Theyarepassivevehicles,requiringaseparateliftingdeviceforloadingandunloa-ding.(Steenkenetal.2004)Figure7illustratesanAGVwithadiagramofanAGVlayout.AfurtherdevelopmentoftheAGVisa‘lift-AGV‘.Theseareequippedwithtwoactivelif-tingplatforms,whichcanliftandplacecont-ainersontransferracksatthestorageareaforstackingcranes.Thisreduceswaitingtimesanddeliversahighertranshipmentrate.(Konecra-nes2019)Figure8showsaLIFT-AGVsystem.Tractorunitsandcontainertrailers/truck-trai-ler-unit(TTU):Thecombinationofatractorunitandcontainertrailerisbasedonroadcon-tainertransporttrucksandisthemostcom-monformofcontainertransporters.Asthecontainertrailerisconnectedbythetractorunit‘sfifthwheel,thetransferofacontainerisperformedbyasimple,automatedreleaseofthetrailersuchthatthetractorunitdoesnothaveanywaitingtime.TTUsarealsopassivetransporters,requiringfurtherequipmentforloadingandunloading.(Speer2017)Figure9showsadiagramandpictureofaTTU.Figure6:StraddlecarrierwithadiagramofastraddlecarrierlayoutFigure7:DiagramandpictureofanAGV(Kemme2013;Gharehgozlietal.2014)Figure8:LIFT-AGVsystem(PortStrategy2012)14Multi-trailer-systems(MTS):Multi-trailer-sys-temsareanextensionoftruck-trailer-units.Uptofivetrailersarecoupledtogetherandtowedbyasingletractorunit(cf.Figure10).Thisreducesthenumberoftripsrequired,theinvestmentandoperatingcostscomparedtoaTTU.StorageequipmentArangeofhandlingdevicesandvehiclesareusedincontainerstorageareastostoreandmovecontainers.Themostcommonarereachstackers,forklifttrucksandvarioustypesofgantrycrane.Reachstacker:Reachstackersaredesignedfortransportandstowageofcontainersandcanindependentlyliftandpositioncontainers.Lif-tingisperformedwithaspreaderonatelesco-picarm,whichenablesahighstackingheightandcompactstowage.(Speer2017)Theyhaverubbertyres,whicharenormallydiesel-pow-eredandmanuallycontrolled.Aswithcont-ainerforklifttrucks,theyareusuallyemployedinsmallerharbourswheregantrycranesandstraddlecarrierscannotbeeconomicallyjusti-fied.(Kemme2013)AdiagramandpictureareshowninFigure11.Containerforklifttruck:Thecontainerforklifttruckisalargevariationofaforklifttruck,usedatportcontainerterminalstotransportandstackcontainersinahorizontalmanner.Theyfunctioninasimilarmannertoreachsta-ckers,butwiththedifferencethatthespreaderismountedonaliftingmasttoraisethecont-ainersvertically(cf.Figure12).Gantry/portalcranes:Stowagecranesorgan-trycranesareusedinstowageareasinportFigure9:Diagramandpictureofatractorandcontainertrailer(Speer2017)Figure10:Diagramandpictureofamulti-trailer-sys-tem(Kemme2013;HafenbetriebRotterdam2016)Figure11:Diagramandpictureofareachstacker(Kemme2013;KreuzerandKonecranes2018)Figure12:Diagramandpictureofacontainerforklifttruck(Kemme2013;SVETRUCK2019)15containerterminalsandforthetranshipmentbetweenterminalandonwardtransportbyroadorrail.Theyaremainlyusedwithpas-sivetransportequipmentandprovidehighlyspace-efficientstowage.Theyarethereforeof-tenusedinterminalswithrestrictedareasforcontainerstowage,becausetheydonotrequi-reaccesswaysbetweentherowsofstackedcontainersandcanstackuptoeightcontainershigh.(Speer2017;Brinkmann2005)Adia-gramandpictureofacontainergantrycraneareshowninFigure13.Gantrycranesaredividedintorailmountedgantrycranes(RMG)andrubbertyredgantrycranes(RTG).Bothtypesaremainlymanuallyoperated,buthaveahighpotentialforauto-mation.(Kemme2013)AsystemwithRMGs/RTGsincludestrans-portersorshuttlecarriers,whichdeliverthecontainerstothegantrycraneforstowage,orreceivethecontainersfortransport.FourorfiveTTUsandtwoRTGcranesarerequiredperquaysidecontainergantrycrane.Thesto-wagecapacityofthistypeofsystemwithsta-cksoffourtoeightcontainershighis750-800TEUperHectare.Thesesystemsaremainlyusedinlargeorverylargeterminals.(Speer2017;Brinkmann2005)ARTGsystemhasgreateroperationalflexibilitythanaRMGsys-tem.Figure14showsaRubberTyredGantryCrane.Arailsystem(RMG-system)canhaveagrea-terwidthandreachthanaRTGandthereforehasastoragecapacityofupto1000TEUperHectareandastackingheightoffourcon-tainers.Moreover,arailsystemwithshuttlecarriersmaybeusedinsteadoftruck-trailerunits.ThissystemrequiresonlytwoRMGsandtwoshuttlecarriersperquaysidecontainercrane.Consequently,itreducespersonnelcostsandincontrasttotheRTGsystem,functionsmorereliablesincethenumberofvehiclesre-quiredislower.Therailmountedsystemalsohasahigherproductivity,becausetheycantra-velatahigherspeedthananRTG.(Kemme2013;Brinkmann2005)Figure15showsarailmountedgantrycrane.Figure13:Diagramandpictureofacontainergan-trycrane(Kemme2013;Gharehgozlietal.2014)Figure14:Rubbertyredgantrycrane(RTG)andtyresofaRTGcrane(turbosquid2019)Figure15:RailmountedgantrycraneandwheelsforanRMGsystem(Konecranes2019b)162.3AutomationofcontainerterminalsAutomatedcontainerterminals(ATC)haveautomatedsystemsfortransportandtranship-ment.(Speer2017)Therearealreadyfourgene-rationsofACT.TheDelta“DedicatedNorthTerminal“atEuropeContainerTerminals(ECT)from1993isrepresentativeofthefirstgeneration.Thesecondgenerationfollowedwiththe“ContainerTerminalAltenwerder“inHamburgwhichcommencedoperationsin2002.The“HollandRotterdamEuromaxTer-minal“isthethirdgenerationandcurrentlythenewlyopened“XiamenOceanGateContainerTerminal“isthefourthgenerationofautoma-tedcontainerterminals.(YangundLi2017)Inthefollowingsectionsthebenefitsandreasonsforautomationaswellastheconditionsandelementsofautomationincontainerterminalswillbedescribed(cf.chapter2.3.1and2.3.2).2.3.1ReasonsforautomationIndustrialautomationusesmechanical,hydrau-lic,pneumaticandelectricalcomputercontrol-ledelementsandsystemsforthecontrolofequipmentandprocesses.Thepersonnelre-quirementsarereducedandtheprocessescanbebettercontrolledthanmanuallyoperatedsystems.Systematicandrepeatedoperationsaremostsuitableforautomation,astheyof-tenfollowspecificandprogrammablerequi-rementsandprocesses.(Martín-Soberónetal.2014)Thecurrentandcontinuedrapidgrowthofdemandforfreighttransportthroughportsduetoeconomicgrowthinkeycountries,globalsupplychainsandincreasingshipsizespresentsamajorchallengeinhandlingthein-creasinglevelsofactivity.Thepotentialforex-tensionofterminalsisoftenlimitedbyseveralfactorssuchasspace,availabilityoffundsforinvestmentorenvironmentalimpacts.There-forethereisarequirementforsustainableso-lutions,whichmanyportsseektoaddressthroughautomation.(Jiangetal.2015)Containerterminalshaveseveralfeatureswhichmakethemparticularlysuitableforau-tomationofequipmentandprocesses.Theunittobehandledishighlystandardised,thetranshipmentprocessisalsostandardisedandthereisahighthroughput.Automationtech-nologiescanimprovetheprofitabilityofter-minals.Automatedcontainerterminalsalsofulfilthreestrategicrequirementsofmodernsustainablebusinessmodels.Theseareimprovedoperati-onalperformanceandproductivity,improvedsafetyandcontributingtowardsanimpro-vementofenvironmentalperformance.Themainreasonforautomationofacontainerterminalisanincreaseinperformance-th-roughputofcontainershandled.ACTsusetheavailablespacemoreefficientlyandthereforemoreintensivelyandhaveahighercapacitythanmanuallyoperatedterminals.Theyen-17ablereal-timedecisionmaking,useresourcesmoreeffectivelyandminimisethesortingofcontainersfortransport.Atthesametime,automationenablesimprovedsafetylevelsforpersonnelandequipment,becausetheyreducetheriskof‘humanerror‘andtheimpactsofaccidents.Althoughautomationisintendedtoimproveproductivity,automatedproces-sesalsohaveasignificantimpactonreducingenergyuseandthereforecontributetoen-vironmentalsustainability.Automationisthe-reforeausefuloptionforenergymanagement.(Martín-Soberónetal.2014)2.3.2ConditionsandelementsforautomationTheconditionsforautomationdependstronglyonwhetheranew(greenfield)termi-nalisplannedoranoperationalterminalistobeupgraded(brownfield).Thelatterrequiresautomationtobeadaptedtothepre-existingconditionsandoperations.(Martín-Soberónetal.2014)FollowingRintanenetal.thefollowingfactorscanbeidentified:•Alignmentofthedesignoftheterminalwiththecurrentconditions(personnelcostsetc.)•Thecontainerterminalshouldbebroughtuptothebestcurrentleveloftechnology,inordertoprovidealong-termsolution•Theimplementationshouldbewellplannedandexecutedwithattentiontodetail,inordertoavoiddelaysandinter-ruptionstooperations•Cleardefinitionoftheoperationalcon-ditions,limitationsduetothesizeofcontainersandtranshipmentequipment,takingworkingconditionsintoaccount•Productionprocessesshouldbeadaptedtothecapacityofthecontainercranes•Simulationsshouldbeusedtodeterminethechoiceandnumberoftranshipmentvehiclesandcranes•AutomationismorethanjustsoftwareimplementationoItimpliesacompleterestructuringofoperationsandproceduresintheterminaloItrequireschangemanagementandretrainingofpersonnel•TheintegrationofIT-systemsisnecessaryandcurrentsystemshavetobeadaptedtotheautomatedprocesses;allthoseinvol-vedintheprocessshouldknowwhattheendproductwillbe(Rintanenetal.2016)Theelementsofautomationwillnowbede-scribed.Mostcontainerterminalsareequip-pedwithmannedmachinesandsystems.Afewterminalsarealreadysemi-automatedwithun-mannedcontainertransporterse.g.unmanned18StraddleCarriersorunmannedRMGsinBris-bane;AGVsinseveralterminalsinRotterdam.(Tran2012)Mostautomatedportterminalshaveautomatedcontainerhandlingequipmentfortransportfromthequaysidetothestorageareaandalsowithinthestoragearea.(Kemme2013)UnmannedStraddleCarriersareusedfortransport,whileautomationinstorageareaismainlyimplementedthroughunmannedRMGs.Quaysidegantrycranesareatpresentmainlymanuallyoperated,althoughthereisahighpotentialforautomation.YangandLisummarisedifferencesbetweensystemtechnologiesforcurrentandautoma-tedcontainerterminals.CurrentterminalsTable1:Differencesbetweenanautomatedcontainerterminalandcurrentcontainerterminalsafter(YangandLi2017)19usedieselpoweredTTUsforcontainertrans-port,gantrycontainercranesandRTGs.Anautomatedterminalusesunmannedtransportsystems,StraddleCarriersandRMGs.Thisge-neratesahigherproductioncapacityinauto-matedterminals,togetherwithalowerenergydemandandasignificantlyreducedenviron-mentalimpact.(YangandLi2017)Furtherim-pactsareshowninTable1.Thecurrenttrendshowsthatportsarewillingtoautomateandimprovetheefficiencyofterminals.Followingthedevelopmentofau-tomatedterminalequipment,currentdevelop-mentsarefocussedonwholesystemsolutions.Thesedevelopmentsincludeautomatedgates,yardsandquaysidecontainergantrycranes.Thedevelopmentofautomatedquaysidegan-trycraneshasthepotentialforamajoradvan-ceincontainerterminaltechnology.(Martín-Soberónetal.2014)2.4TianjinPortThisstudyanalysesthepotentialforautomati-ontoimprovetheenvironmentalperformancefortheexampleofTianjinport.TheanalysiscomparestheinternationalpositionofTianjinportintermsofgeographical,eco-nomicandenvironmentalfactors(cf.chapter2.4.1).TheTianjinFiveContinentsInternationalContainerTerminalisdescribed(cf.chapter2.4.2).2.4.1CurrentstatusofTianjinportTianjinPort,orTianjinXingang(newport)wasopenedin1860underthenameTanggu.ThecurrentnameofTianjinportCompanywasadoptedin1952.TianjinportliesattheboundarybetweenBei-jingandTianjin,ontheWestbankoftheBo-haiBayinthenorthoftheYellowSea.Itis56kmeastofTianjincityand160kmfromBeijing.ThispositionmeansthatTianjinisthemainportfortheBeijingregioninChinaanditisanimportantinternationallogisticshub,aswellasacentreforinterchangeofgoodsintheChinesetransportnetwork.Itservesmorethan20shippingroutestoover500portsin180countries.(ChinaRundreisen2019)Theporthasatotallandandwaterareaof336km2,withanareaof107km2andmorethan36kmofquaysand140berths.(Deh-merandWang2015)Thenominalcapacityis458.97milliontonnesand11.31millionTEUcontainerthroughputperyear.Thisgivesatheoreticalcapacityofbulkgoodsandagriculturalproductionsof334.87milliontonnesperyear.Theporthasfivemainareas:Beijing,Nanjiang,Dongjiang,HaiheandBeitangwithatotalofsevencon-tainerterminalsandbulk,general,oil,Ro-Roandcruiseterminals.(WorldPortSource2012)20In2018,thecontainerthroughputwasappro-ximately16milliontonnes,considerablygrea-terthanthe2015capacity,makingTianjinportthe9thlargestcontainerportgloballyandthelargestcontainerportinnorthernChina.(HafenHamburg2018b)Figure16showsanoverview.ThemainenergycarriersinTianjinportareelectricity,diesel,petrol,LNG,naturalgasandheat,ofwhichmorethan90%ofenergyuseiselectricityanddiesel.Themainenergyusersaretranshipmentandtransportequipmentin-cludinglightingandventilation.(TianjinPortDevelopmentHoldingsLimited2018)ThetotalenergyuseofTianjinportin2017was2,808,795GJ.Directresourceusewas36,167tonnesofdiesel,290tonnesofpetroland2085tonnesofLNG.Thiswasusedinportequipment,shipsandvehicles.Thetotalindirectenergyusethroughelectricityandheatwas69,334GJ.Incomparison,thecomputercentreoftheGooglesearchenginerequires8,136,000GJ,similartoalargecity.NewYork,thecitywiththehighestenergydemandglo-bally,hasademandof280,224,000GJperyear.(lifestrom2018)Directemissionsfromfueluseandindirectemissionsfromelectricityandheatusewere390,255tonnesCO2in2017.(TianjinPortDe-velopmentHoldingsLimited2018)2.4.2TianjinFiveContinentsInternationalContainerTerminalThissectionconsiderstheTianjinFiveConti-nentsInternationalContainerTerminal,usingdataprovidedbyTIWTE.TIWTEcooperatescloselywiththeterminal.Thelevelofautoma-tionoftheterminalanditsprocessesisasses-sed.TheTianjinFiveContinentsInternationalContainerTerminalwasthefirstterminaltoautomateRMGs.ContainerhandlingforTianjinPortissituatedinthenorthernandeasternpartsoftheXian-jingportarea.Thereare23containerstorageareaswithacapacityof11.25milliontonnes.TheTianjinFiveContinentsInternationalContainerTerminalisnorthofthe“EastTur-bulent“dikeattheeasternendofthecanaljunctionofTianjinPort.Thequayis1202mlongandhasfourberthsforshipsuptoaca-pacityof200,000tonnes.Theterminalhasanareaof350,000m2forcontainerstorage;Figure16:Top20containerports,rankedbycon-tainerthroughout2018(HafenHamburg2018b)21240,000m2forloadedcontainersand20,000m2foremptycontainers.Thereare12quay-sidegantrycranesand31RMGs.TheTianjinFiveContinentsInternationalContainerTer-minalworkswith16internationalcontainerlinesandhas11internationalroutesserving40portsinmorethan20countries.TherearealsonumerousfeederservicesinBohaiBay.In2016,1.78millionTEUwerehandled,ofwhich1.52millionTEUwereloadedand526,000TEUwereemptycontainers.Tianjinportisnotyetatthelevelofthethirdgenerationofautomation.Conventional,mannedtranshipmentandcontainerhandlingtechnologyisstilldeployed.Althoughope-rationshavebeenoptimisedandpersonnelworkingveryefficiently,thereisanincreasingrecognitionthattheincreasingquantityofequipmentrequiresmorepersonnelresources.Thisrequirementiscausingbottlenecksandconflictsbetweentheconventionaloperationsandthetrendtowardslargercontainershipswiththeirdemandsforimprovedefficiencyofcontainerloadingandunloadingproces-ses.Thedemandsontheterminallogisticsareincreasing,butthepotentialfordevelop-mentofefficienthandlingoflargercontainershipsislimited.Achangefrommanualpro-cessestoautomationtocurrentinternationalstandardswouldovercomethelimitationsinenvironmentalperformance,reduceenergyrequirementsanddeliverimprovedreliabilityofoperations.Automationtoachievethenextlevelofcontainerterminaltechnologywillre-quirestrengtheningofassociatedservicesattheportandthiswouldensurethecontinuinginternationalcompetitivenessofTianjinport.Theimplementationofthe“IntelligentPortDemonstrationProject“inApril2017wasanimportantmilestoneintheoveralldevelop-mentofTianjinporttoanintelligentport.ThecompletionoftheautomationoftheTianjinFiveContinentsInternationalContainerTer-minalisexpectedtodeliveranincreaseinth-roughputof200,000TEUperannum.Therefittingincludes31currentRMGswithRMGProgramLogicControl(PLC)systemsinclu-dingthepositioning,scanning,movementandidentificationsystems.Therenewalofcom-municationssystems,renovationofcontainerrepairandmaintenanceareas,peripheralac-cessroads,administrationandelectricitysup-plyareplanned.22FollowingthediscussionofthekeyfunctionsandequipmentinacontainerterminalandtheassessmentofTianjinportanditslevelofau-tomation,thischapterassessesthesourcesofemissionsandtheenergybalanceoftheterminalelementsandequipment(cf.chapter3.1and3.2).Theenergyefficiency,transhipmentandcontainercirculationeffi-ciencyofautomatedcontainerterminalsarecomparedwithmanualterminals(cf.chapter3.3).Potentialreductionmeasuresareidenti-fied(cf.chapter3.4).3.1EmissionssourcesinaportterminalTheOECD(OrganisationforEconomicCo-operationandDevelopment)dividesenviron-mentalissuesintothreeareas:emissionsfromships,portactivitiesandhinterlandactivities.(Duetal.2019)Thisstudyconsidersemissi-onsinsidetheterminal,apartoftheemissionsfromportactivities.ThecomplexsystemsinportterminalshavemanypotentialsourcesofCO2emissions.Yangetal.hasasystematiccategorisationandanalysis.Directemissionscomefromtransportandheavyequipmentandtwoindirectsour-ces:materialandenergyconsumption.Theseemissionssourcesareassignedtothelogistics,informationandbusinessservicecentresasshowninFigure17.AlogisticsservicecentrewithtransportandheavymachineryhasahighlevelofdirectCO23.EnergyefficiencyinautomatedcontainerterminalsFigure17:Emissionsourcesinaport-integratedlogisticsystem(Yangetal.2017)23emissions,whiletheinformationandbusinessservicecentresgenerateindirectemissionsth-roughmaterialuseandenergydemand.(Yangetal.2017)CO2emissionsfromtransportincludealldi-rectemissionsfromships,trains,trucksandothervehicles.Directemissionsfromloadingandunloadingprocesses,transhipmentandstackingareincludedunderheavymachi-nery.Theheavymachineryusesfuel(orelectricity)toconducttheiroperations.CO2emissionsfrommaterialuseincludeemissionsfromhandlingprocesses,inparticularfromrework,packingandpaperuse.Sincetheseactivitiesareusuallylocatedoutsidetheportarea,theyareincludedintheindirectemissi-onsofintegratedportlogistics.Theemissionsfromthefourthcategory,electricityconsump-tion,arisemainlyfromtheoperationofinfor-mationplatformsandwarehousingservicese.g.refrigeratedwarehouses,whichusealargeamountofelectricalenergy.Amoredetailedexaminationofemissionsourcesinalogisticsservicecentreenablesthedefinitionofsub-categories.Theseincludetransport,storage,loadingandunloadingpro-cessesaswellasdistributionprocesses.Shipsandvarioustypesofvehiclesarethelargestemissionsourcesfortransportanddis-Figure18:Emissionsourcesinalogisticsservicecentre(Yangetal.2017)24tributionservices.RTGsandRMGs,forklifttrucksandreachstackersarethemainsourcesintranshipmentandstorage.Thesesourcesarealldirectemissionsandcanbeidentifiedandcalculated.Furthersourcesarerefrigera-tedwarehouses,whichuseelectricalenergyaswellasmaterialsforprocessingandoperatio-nalserviceswhichcauseindirectCO2emissi-ons.AdetailedtypologyofemissionsourcesinalogisticsservicecentreisshowninFigure18.CO2emissionsinacontainerterminalari-sefromenergyconsumptionintranship-mentequipment,warehousesandoffices,heatingenergydemandandfurtherenergycarrierssuchasgasordieselfortransportandwarehouseequipment.Greenhousegasemis-sions(GHG)arecalculatedastheproductofenergyconsumptionandtheemissionsfactor(GHGemissions=energyuseemissionsfactor).(Kaffkaetal.2015)TheconceptofLifeCycleAssessment(LCA)hasbeendevelopedtoenablequantitativecomparisonofenvironmentalimpacts.LCAsassessthepotentialenvironmentalimpactscausedthroughthewholelifecycleofapro-ductfromrawmaterialextractiontofinaldis-posalorrecycling/reuse.Animportantpartoftheassessmentisthecalculationofthecarbonfootprint,whichincludesabalancesheetofgreenhousegasemissions.Apreciseassess-mentrequiresahighlevelofdata,withanextensiverequirementfordatacollectionandprocessing.Forthisreason,systemsareoftensimplifiedfortheanalysis,reducingtheplausi-bilityoftheresults.(Kaffkaetal.2015)There-fore,thisstudyisfocussedontheinvestigati-onandassessmentofCO2emissions.FurtherGHGemissionsarenotconsidered.Geerlingsetal.provideaconsistentclassifica-tionoffunctionsfortheallocationofemissi-onssources.ThisisbasedontheinternationalStandardsGreenhouseGas(GHG)ProtocolandISO14064.(Geerlingsetal.2014)TheclassificationisshowninTable2.Table2:Allocationofemissionssourcestofunctionalareas(Geerlingsetal.2014;GHGProtocol;ISO14064)253.2EnergyuseofterminalequipmentTheanalysisoftheenergyefficiencyofau-tomatedcontainerterminalsrequiresdataonenergyuseoftheemissionssourcesdiscussedabove.DatafromGeerlingetal.wasusedforthetranshipmentequipment.(Geerlingsetal.2014)Thedatainthisstudywerevalidatedto95%intheRotterdamcontainerterminalsandinthreefurtherportcontainerterminalsintheNetherlandsandareshowninTable3.Johansonhasamoredetailedanalysis.Anener-gydemandof6kWhpermovementfor30mo-vementsperhourwasmeasured.Theauxiliaryenergyconsumptionfrommotorcoolingfans,headlights,hydraulicpumpsandrunninglightswas2kWhpermovement.(Johanson2010)Saanenanalysedtheenergyimpactofauto-matictransportersandStraddleCarriers.CO2emissionsperhourandtheresultingcostspermovementwerecalculatedfromvehicleweight,fuelorenergyconsumptionsofdieselorbatteryvariants.Valuesof1€perliterDieseland0.15€perkWhofelectrici-ty,factorsof2.6kgCO2and0.24kgCO2perkWhwereused.(Saanen2016)TheresultsareshowninTable4.AutomatedvehicleswithdieselorbatteryelectricpowertrainshadthelowestCO2emissions.StraddleCarriershaveahighfuelconsumptionandrelativelyhighemissionsbycomparison.Table3:Energyusebytranshipmentequipmenttype(Geerlingsetal.2014)263.3Automatedvs.non-automatedcontainerterminalsThecontainerterminal„XiamenOceanGate“,mentionedinchapter2.3,representsthefourthgenerationofautomatedcontainerterminals.Ithasthree„twinvehicle“quaycra-nes,18AGVsand16RMGs,whichtogetherfulfiltherequirementforautomationdescri-bedinchapter2.3above.Thissystemhasacapacityof9.5millionTEUperyear,the15thlargestterminalintheworld.Comparedtocurrentterminals,alsodescribedinchapter2,a25%energysavingandmorethan16%CO2emissionsreductionisachieved.Thetranship-mentefficiencyis20%higher,bringadditio-naleconomicadvantages.(YangandLi2017)Automationofterminalprocessesenablesmoremovementsperhourandthereforeahighertranshipmentcapacity,whichleadstoindirectenergysavings.Reducedtimeattheberthforshipsorareductionintheperiodofoperationofequipment(lighting,coolingetc.)alsocontributestoemissionsreductions.Directenergysavingsarealsopossible,asau-tomatedprocessesareoftenmoreprecisethenmanualsystems.Forexample,aloadisnotliftedhigherthannecessarybyanautomatedsystem.Althoughareductionofloadsavesenergy,thereisalossof20-25%intheefficiencyofmechanicalandelectricsystems.Thislosscanbereducedbyautomation.(Johanson2010)Intelligentcontrolsystemsoratleastmoreef-ficientcontrolsystemsarerequiredtofurtherincreaseenergysavings.Thesecancomefromreductionsinemptyloadmovements,unneces-sarymovements,longwaitingtimes,reductionindistancesmovedetc.Saanenetal.conductacomparativestudybet-weenaterminalwithRTGsandTTUswithTable4:ComparisonoftheenergyefficiencyofAGVs,liftAGVsandstraddlecarriers(Saanenetal.2015)27automatedRMGscombinedwithAGVs.Thedifferencesarealsodescribedinchapter2.3above.Theresultoftheassessmentwasthatanautomatedterminaloperatingatmaximumthroughputcouldachieveapproximately14%energysavings.Allowingforthesavingsfromincreasedtranshipmentperformanceandsub-sequenteffectssuchasareductionintheope-ratingtimesofequipment,anoverallsavingof34%inannualelectricityconsumptioncanbeachieved.(Saanenetal.2015)3.4ReductionmeasuresAutomationofterminalprocesses,whichde-liverreductionsinCO2emissionsisthefirststeptowardsanenergyefficientport.AstudyfromtheNetherlandshasshownthat30%oftheenergyconsumptioninterminalsisduetotranshipmentprocesses.40%isforrefrigera-tedcontainers,20%comesfromterminalligh-tingand10%fromotherrequirementssuchasheating.(Geerlingsetal.2014)Thissectionth-ereforeconsidersfurtherreductionmeasuresthathavethepotentialforreductionsinener-gyconsumptioninadditiontoautomation.Measuresforoptimisationoftranshipmentprocessesareconsideredindetailinchapter3.4.1.Modificationstoinfrastructurearecon-siderednext.TheseareaconsiderablepartofCO2emissions(cf.chapter3.4.2).Anassess-mentoftherelevanceoftheresultsforTianjinportandconceptsformeasuresforemissionssavingsarepresented(cf.chapter3.4.3).TheanalysisisbasedonGreenPortstrategies,suchasport-specificenvironmentalreportingsystems,airpollutioncontrolmeasures,sup-portofachangeinthemodalsplitofhin-terlandtransportandenvironmentallyfri-endlytechnologiesintheport.(KrämerandBargen2018)Holocheretal.definetheconceptofGreenPortsasa„conceptforsus-tainableportactivities“,consistingofthreepillars.GreenportscanbeusedasanecessaryrequirementforGreenShippingandrepresentportsthatareequippedandmanagedforreducedenvironmentalimpactintheiroperations.(Holocheretal.2016)3.4.1OptimisationoftranshipmentprocessesOptimisationofoperationsincludesreducti-onmeasuresthathavetheobjectiveofavoi-dingunnecessarytranshipmentactivitiesandmaximisingtheefficiencyoftheuseofthetranshipmentequipment.Distancesmovedbytranshipmentequipmentareparticularlyimportant,asthefuelorenergyconsumpti-onisdirectlyrelatedtothedistancemoved.Therefore,thetranshipmentdistancesshouldbeminimised,whichmeansthattheterminallayouthastobeadaptedtotheprocessesinuseandcontinuouslyexaminedandupdated.Transhipmentsshouldbeminimised,aseverymovementincreasesenergyuse.(Kaffkaetal.2015)Inthiscontext,theportofHamburghasin-itiatedamultipleloadproject.TheAGVsare28loadedwithtwo20footcontainers,toreducethenumberofAGVtrips.Thisleadstoanannualemissionssavingofupto600tonnesCO2.(HafenHamburg2013)TheAGVsattheAltenwerdercontainerterminal(CTA)usedaround5millionlitresofdieselperyearinrecentyearsandrepresentthelargestde-mandforfuel.Forthisreason,itwasdecidedtoimprovetheenvironmentalefficiencyoftheAGVsandswitchtorenewableelectricity.Thiscouldsaveuptoaround15,000tonnesCO2peryear.(HafenHamburg2018a)Withregardstothequaycranes,areductioninenergyusecanbeachievedthroughregenerati-veenergy,feedingcurrentbackintothedistri-butionnetwork.Ifthereis20-25%regenera-tiveenergy,theCO2emissionswillbereducedbyupto4400tonnesperyear.(Storchetal.2018)Afurtherconsiderablesavingspotentialarisesfromthepossibilityofoperatingseveralcranessimultaneouslyandusingtheregenera-tiveenergytomeettheoverallenergydemand.Theenergygeneratedatonepositioncanbefedintothecommondistributionnetwork.Studiesshowthatwith10cranesrunningsi-multaneously,around30%energysavingsarepossiblewhentheenergyissimultaneouslyge-neratedandused.Thisalsoreducesthepeakloadonthedistributionsystem,enablingthesizeoftransformersandsubstationstobere-ducedwithlightercablesforsupplyofthecra-nes.(Johanson2010)Energysavingscanalsobeachievedinauxilia-ries.Theauxiliariesforaquaycranedescribedconsistofcoolingfans,headlights,hydraulicpumpsandrunninglights.Theserequire2kW/h.Thiscanbereducedthroughaseriesofmeasures.Themotorcoolingfanscanbeoptimisedtobeswitchedondependingonthetemperatureofspeed,insteadofrunningcon-tinuously.Theheadlightsshouldonlybeusedwhenrequiredinspecificpartsofthequay.Therunninglightscanbeswitchedoffafteragiventimetoreduceenergydemandandemis-sions.(Johanson2010)Aswitchtomoreenvironmentallyfriend-lyvehicles(runningwithelectricityorLNG)andthedevelopmentofrenewableenergyinaportareamongthemostimportantGreenPortstrategies.Furtherpossiblestrategiesarethedevelopmentofwastemanagementandrecycling,includingwastewater,waterpollu-tionandballastwater,reductionofnoise,vi-brationsanddustparticlesfromtranshipmentactivitiesandmeasuresforprotectionofeco-systemsinthesea.ThestrategiesforsavingofenergyincranesfromloweringcontainersorthedeploymentofLNGpoweredtrucksdiscussedabovearefurtherexamples.SmartPortManagementcancombinemeasuresforreductionofemissions,energyuseandcoststhroughminimisingemptyvoyages,useofdi-gitaltechnologiesforoptimisationoflogisticsprocessesordeploymentofinnovativemo-bilityconcepts.(Duetal.2019)Thefeedback29betweenenergyuseinthetransportfleetandlogisticscanbeidentifiedthroughthemea-surementofelectricalloadsontranshipmentequipment.Thisdatacanbeusedtodevelopstrategiestoincreasecontainerthroughputwhiletakingaccountofenergyuse.Anas-sessmentofthepotentialenergydemandcanbemadethroughsimulationoftheplannedfuturelogisticsprocesses.(Grundmeieretal.2015)3.4.2MeasuresforinfrastructureandpersonnelCO2emissionsthatdonotcomedirectlyfromthetranshipmentprocessesarisefromtheoperationoflighting,refrigeratedcontainersandtheuseofITequipmentinofficesandworkshops.Lightingcauses10-20%oftheto-talCO2emissionsofacontainerterminalandisthereforeoneofthelargestcomponentsofenergydemand.Itisusefultodifferentiatebet-weendayandnightlighting,asmanyterminalsarerun24hoursadayandlightingatnightisessential.Energyforlightingduringthedayisgenerallythreelevelsbelowthenighttimeuse.(Grundmeieretal.2015)TheHamburgEuro-gateterminalhasimplementedtheoptimisati-onoflightingcontrolsandaswitchtoLEDlighting,whichhasachievedenergysavingsof25%.Anewairconditioningunitinthecom-putercentresaved30%oftheannualenergydemand.(Storchetal.2018)TheTaiwanIn-ternationalPortsCorporation(TIPC),whichoperatessevenportsinTaiwanhasreducedoverallenergydemandby3%throughener-gysavingmeasuresinoffices.Theseincludedwater,electricity,fuelandpaperuse.(Whelan2019)TheportofHamburgprovidesfurtherex-amplesofenergysaving.TheHamburgHar-burgContainerTerminalTollerortuseshe-atingfromwasteheatfromthelocalsewageworks.Thisformofheatrecoverysaves1000tonnesCO2peryearandsavesenergycosts.(HafenHamburg2013)TheHamburgEuro-gateterminalhasitsownwoodpelletheatingsystem,whichusesaforestrywasteproductinsteadoffossilfuelforallitsofficebuildings.Extrainsulationinstalledduringbuildingreno-vationsaves50%oftheheatingenergyde-mand.(HafenHamburg2013)Personnelinaterminalareanimportantfactorinenergysaving.The“Industry4.0“trendtodigitalisationandautomationisincreasingthespecialisationandqualificationsrequiredforpersonnel.Eventhoughitisnotnecessaryforeveryworkertohavespecialqualifications,thisstillleadstotherecruitmentofdifferentca-tegoriesofpersonnelforthenewequipment.(Vitzthumetal.2017)Atthesametime,per-sonnelcanbetrainedtodriveandtobrakeinanenergy-savingmanner.303.4.3RecommendationsforTianjinportDataonenergyusebyRMGsbeforeandafterautomationfromTIWTEwasusedtoassesstheleveloftheenergyuseoftheTianjinFiveContinentsInternationalContainerTerminal.Theanalysisassessedtheadvantagesanddi-sadvantagesofautomationandtheenergysa-vingpotentialofcontainerterminalautomati-on.Fourareaswereanalysed:1.Voltage,currentandpowerrequirementforvariousoperations2.Energyconsumptionbycontainerhand-lingoperations3.Energyconsumptionbycranes4.Energyconsumptionbysupportingequip-mentVoltage,currentandpowerThetablebelowshowsthevoltageandcurrentofthreerepeatedoperationsbeforeandafterautomation.Automationdidnotdeliversigni-ficantreductionsinvoltage,currentorpower(seeTable5andTable6).EnergyconsumptionbyhorizontaltransportationDataonenergyuseforloadingandunloadinghavebeenprovided.Theenergyuseforliftingishighandwhenloweringthegravitationalenergyisusedforregenerativeenergyproduc-tion.Automationhaseliminatedabruptchan-gesofdirectionorvelocity.Theenergymadeavailablethroughautomationisusedfore.g.stabilisationofthepositionofthecontainer.Thecontrolsystemhasalsobeenimproved.However,itcanbeassumedthatsomeauto-matedsystemswillrequiremoreenergyorge-neratemoreheatlosses.EnergyconsumptionbyverticaltransportationAutomationhasnotmadeanysignificantdif-ferencetotheenergyrequirementsofcranes.Theenergyuseduringoperationofcontainerportalcraneswasinvestigated.AutomationTable5:Currentandvoltagefromthree-phasealternatingcurrentofRMGsbeforeautomation31improvedliftingandloweringofcontainersbyenablinganoperatorinaremotecontrolcentretocontrolsixquaysidegantrycranesin-steadofeachcranehavingitsownoperatorinacabin.Lightandairconditioningsystemsarenowonlyrequiredforthecentralcontrolroom,insteadofthecabsofcranes,whichre-ducestheenergydemand.Thesesavingsareoneofthemostimportantbenefitsofauto-mation.EnergyconsumptionbysupportingequipmentTheenergyconsumptionbythevariousauxi-liariesisrelativelysmallandalsoshowingnosignificantchangesfromautomation.Table7showsacomparisonoftheenergyuseofindividualRMGsbeforeandafterautoma-tion.Theleftcolumnsshowenergyuseforliftingandloweringthecontainers,followedbytraversingofthetrolley.ThesearesummedtocalculatetheenergyusepercontainerforanRMG.GreencellsshowRMGsthathaveareducedenergyuseafterautomation.Itcanbeseenthatonlythreecraneshaveareducedenergyuse.Thisdatashowsthatautomationofacranedoesnotnecessarilyleadtoenergysavings.Thisisshownbycomparingthedatabeforeandafterautomation.Energyusewasbetween1.3and2.1kWhbeforeandbetween1.7and2.25kWhafterautomation.Itshouldhoweverbenotedthatthedatadoesnotenableade-tailedquantitativeandqualitativeassessmentofthepotentialforautomationtoreduceener-gyuse.Thetableenablesaninitial,approxima-teassessment.Further,detaileddatawouldberequiredforacompleteanalysis.Itisnecessarytomeasureandcomparetheenergyconsumptionunderthesamecondi-tionsforcranes.Theweightandsizeofthecontainerandthenumberofmovementsde-terminetheenergyconsumption.Datafortheaverageweightperload,liftandtimeoftheRMGsisrequiredtocalculateandassessthepotentialsavingspercrane.Furthermore,Table6:Currentandvoltagefromthree-phasealternatingcurrentofRMGsafterautomation32thewholeprocessshouldbeas-sessed.Theautomationofthecranes,hereRMGs,canleadtoahigherenergyrequirementforthecranes,buttheinclusionofvariablesforthewholeprocesscanshowreductionsinenergydemand.Thisisbecausetheau-tomationofthecranesinfluencesotherelementsoftheprocesse.g.theproductivityoftransportervehiclesorthetimetopositionvehiclesandcontainers.Table7:RMGenergyconsumptiondataon-sitecollectionbeforeandafterautomatisation4.ConclusionsandrecommendationsTheautomationofterminalequipmentleadstonumerouschangesinterminaloperations.Completeautomationrequiresmodificationstooperationalproce-duresandincomparisontomanualorpartlyautomatedterminals,theycandeliversignificantenergyandCO2emissions.Thesecanbeachievedthroughimprovedoperationalperformancewithahigherthroughputofcontainers,re-ducedoperationtimesfortheequipmentandreducedemissionspermovement.Thesefactorscandeliversavingsofuptoaquarteroftheenergyconsumptionbyterminaloperationscomparedtoacurrentterminal.Thedevelopmentoftheportisnotyetcompleted.Untilnowthelogisticplan-ningsystemandtheMove-Jobplanninghasbeenextendedandoptimized.Therearehowever,furtherareaswiththepotentialforimprovement,someofwhichareoutsidetheoperationsprocesses.Automationhasmainlybeenap-pliedtotheRMGs,whichmainlyhasanimpactontheenergyuseforasinglecontainertranshipment.Abroaderanalysisshouldconsiderthetotalenergydemandwiththeinclusionofallrelevantparameters(cf.chapter3.4).Alargepartoftheenergydemanddoesnotnecessarilycomedirectlyfromtranshipmentoperations(cf.chapter3.4and1).Serviceandauxiliaryins-tallationsandequipmentincludingterminallightingaswellasrefrigeratedcontainerelectricitysupplyarealsoimportant.Therefore,thereisanurgentrequirementtoimplementbroaderorganisationalandterminal-specificmea-surestoachievesignificantenergydemandandhenceemissionsreductions.CompleteautomationaloneisnotsufficienttoachievethesustainabilitygoalsthatwouldtransformTianjinportintoaGreenPort.However,theyarerealisticfurthermeasuresaspartofastrategyforsustainabilityinTianjinport.Thetestdatareceivedincludethevoltageandcurrentofthethree-phasesup-plyandtheenergyusepercontainerbyRMGsbeforeandafterautomation.Thedatashowthattherewasnosignificantchangeinvoltageorcurrentcomparedtostandardquaysidegantrycranes(cf.Table5,Table6andTable7).ThedataonenergyuseofsingleRMGsalsoshowthattherewasnosignificantchangethroughautomation.Itisrecommendedthatmorecomprehensivedatashouldbecollected.Thesefurthermeasurementsshouldbedesignedtoenableamorecomprehensiveanalysis,coveringthewholeprocessofloadingandoffloadingacontainerindetail.Thiswouldenabletheidentificationofprocessesthathavethepotentialtosaveenergy.Highenergyuseduetomanualoperatione.g.relativelylongtimesforanope-ration,longwaitingtimesoroperationalmistakescanbeavoided.Theinfor-mationreceivedindicatesthatthereisasmalldecreaseintherequirementformaintenancethroughautomation.However,theequipmentisingeneralmorecomplexandplacesincreaseddemandsonpersonnel.Therefore,thereisare-quirementfortrainingoftheoperationspersonnel.Itisfurtherrecommendedthattheothertransportandhandlingequipmentintheterminalshouldbeautomated,too.Thiswouldincreasethesafetyofoperationsandefficiencyofthehandlingoperations.Consequently,thiswouldinturndeliverenergysavings.FurtherpossibilitiesforprocessoptimisationareshowninFigure18onpage23.Table3listsselectedhandlingequipmentandtheirenergyconsumptiontoindicatethepotential.Recommendationsaresummarisedasfollows:VERTICALTRANSPORTATION•CompleteautomationoftheTianjinFiveContinentsInternationalContainerTerminal(currentlyonlyRMGs)•AutomationofthequaysidecontainercranesHORIZONTALTRANSPORTATION•Completeautomationoftransportersandcontainerhandlingandstowageequipment(atpresentonlyRMGshavebeenautomated)•CompleteautomationoftheothersixcontainerterminalsSERVICEANDAUXILIARYEQUIPMENT•Measurestoupdatetheorganisationoftheterminal,enablingaspecificlayoutofthefacilities•Reductionofenergyconsumptionbyterminallighting,refrigeratedcont-ainersandenergyintensiveprocessesRECOMMENDATIONSFORPERSONNEL•Trainingintheoperationoftheequipment,asitismorecomplexandrequiresnewprocedures•Avoidanceofinefficientoperatingmethods•AvoidanceoflongwaitingtimesforequipmentandoperationalmistakesGENERAL•Measurementofenergyconsumptionbycranesandotherequipment•Creationofamoredetaileddatabaseofoverallenergyconsumptionincludingallrelevantparameters(Identifyelementswithlowerenergyconsumption).36Theobjectiveofthestudy“Analysisandassessmentofenergyefficiencyinautomatedcontainerterminals“(Topic1)istheassessmentofthepotentialforautomationoftheequipmentinTianjinPorttoimproveenvironmentalperfor-mance.Therelevantkeyfactors,functionsandprocesseswereidentified.Thereasonsandnecessaryconditionsforautomationwerediscussedandtheelementsofautomationwereidentified.Theenergyefficiencyofanautomatedcontainerterminalwasdescribed,usingdataonemissionssourcesandenergyconsumptionbyterminalequipment.Automatedandnon-automatedcontainerterminalswerecompared.Measuresforenergydemandreductionincludingoptimisationofhandlingprocesses,in-frastructureandpersonneldevelopmentswerecomparedwiththeTianjinFiveContinentsInternationalContainerTerminal.Theproposedreductionmeasures(cf.chapter3.4)andtheassessmentoftheTianjinFiveContinentsInternationalContainerTerminalshowthatthetermi-nalisdevelopingitslevelofautomation.ItcanberegardedastheleadingfacilityinTianjinPort.OperationprocessesincludingtheproductionplanningsystemandMove-Jobplanninghavebeenadapted.Itisnecessarytodeveloparepresentativedatabaseforanassessmentofcompleteautomationandtheassociatedenergyuseofcontainercranes.Thecooperationshowedthatthereisaneedforimprovementsinthisareatoenableamorecomprehensiveanddetailedestimationofthepotentialofcompleteautomationtodeliverenergysavings.Theanalysisinthereport“Sustainablestrategiesforports“(Topic3)showsthatChinesePortsaresuccessfullydevelopingtheircapabilitiesas“Intelligentports“,“Cleanandrenewableenergies“andenergymonitoringandmanagement.Theyareimplementingmanyinnovativemeasuresintheseareas.Themeasuresrecommendedshouldbeusedasthebasisforfeasibilitystudies,projectionsofperformanceandtheimplementationoffurthermeasures,inad-ditiontothecompletionofcurrentmeasures.375.ReferencesBrinkmann,Birgit(2005):Seehäfen-PlanungundEntwurf.BerlinHeidelberg:Springer.Brinkmann,Birgit(2011):OperationsSystemsofContainerTerminals:ACompendiousOverview.In:JürgenW.Böse(Hg.):HandbookofTerminalPlanning.NewYorkDodrechtHeidelbergLondon:SpringerScience+BusinessMedia(OperationsResearch/ComputerScienceInterfacesSeries49),p.25–39.Isavailableonlineat:https://pdfs.semanticscholar.org/e6d5/b52ebea65424384f7e05909b8e816f55e936.pdf,checkedon29.01.2019.ChinaRundreisen(2019):Tianjin-EineHafenstadt.Isavailableonlineat:https://www.china-rundreisen.com/tianjin/.Clausen,Uwe;Geiger,Christiane(2013):Verkehrs-undTransportlogistik.2.Aufl.Berlin,Hei-delberg:Springer.Dehmer,Dagmar;Wang,Nina(2015):TianjinamAbgrund.ExplosionskatastropheinChina.Hg.v.DerTagesspiegel.Isavailableonlineat:https://www.tagesspiegel.de/politik/explosi-onskatastrophe-in-china-tianjin-amabgrund/12195458.html.Du,Ke;Monios,Jason;Wang,Yuhong(2019):GreenPortStrategiesinChina.In:RickardBergqvistandJasonMonios(Hg.):GreenPorts.InlandandSeasideSustainableTransportationStrategies.WithassistancefromJoeHayton:ElsevierInc.,p.211–229.Geerlings,Harry;Duin,Ronvan;Rossum,Tiurivan;Heij,Robert(2014):GreenEFFORTS-GreenandEffectiveOperationsatTerminalsandinPorts.Deliverable4.2Atop-downmethodologytocalculatetheCO2-footprintforterminaloperations;the6-stepapproach.Isavailableonlineat:https://repub.eur.nl/pub/99281/GREEN-EFFORTS-Deliverable-4.2-Geerlings-et-al.pdf,checkedon12.02.2019.Gharehgozli,AmirHossein;Roy,Debjit;Koster,Renéde(2014):SeaContainerTerminals:NewTechnologies,ORmodels,andEmergingResearchAreas.In:SSRNElectronicJournal,checkedon29.01.2019.Grundmeier,Nico;Ihle,Norman;Hahn,Axel(2015):EinSimulationsmodellzurAbbildungundPrognosederelektrischenLeistungsaufnahmeinSeehafen-Containerterminals.In:MarkusRabeandUweClausen(Hg.):SimulationinProductionandLogistics.Stuttgart:FraunhoferIRBVerlag,p.555–564.Isavailableonlineat:http://www.asim-fachtagungspl.de/asim2015/papers/Proof_140_Grundmeier-V2.pdf,checkedon19.02.2019.38HafenHamburg(2013):GreenPortSpecial.Isavailableonlineat:http://epub.sub.uniham-burg.de/epub/volltexte/2013/18137/pdf/port_special.pdf,checkedon18.02.2018.HafenHamburg(2018a):GreenPort.PortofHamburgMagazine.Isavailableonlineat:htt-ps://www.hafen-hamburg.de/downloads/media/dokumente/HHM_POHH-Magazin_2-18-deu.pdf,checkedon18.02.2018.HafenHamburg(2018b):TopWeltContainerhäfen.Hamburg.Isavailableonlineat:https://www.hafen-hamburg.de/de/statistiken/top-20-containerhaefen.HafenbetriebRotterdam(2016):Containerexchangeroute.Thesmartwaytoconnect.Makeithappen.Rotterdam.Isavailableonlineat:https://www.portofrotterdam.com/sites/default/files/downloads/container-exchangeroute.pdf?token=L9FeANsV,checkedon04.02.2019.Holocher;Meyerholt;Wengelowski(2016):GreenPorts-EinKonzeptnachhaltigerHafenak-tivitäten.In:InternationalesVerkehrswesen(3),p.29–31.Jiang,Xinjia;PengChew,Ek;HayLee,Loo(2015):InnovativeContainerTerminalstoImpro-veGlobalContainerTransportChains.In:Chung-YeeLeeandQiangMeng(Hg.):HandbookofOceanContainerTransportLogistics.MakingGlobalSupplyChainsEffective.NewYorkDodrechtHeidelbergLondon:SpringerInternationalPublishingSwitzerland(InternationalSeriesinOperationsResearch&ManagementScience,220),p.3–41.Isavailableonlineat:https://link.springer.com/chapter/10.1007/978-3-319-11891-8_1,checkedon29.01.2019.Johanson,Frederik(2010):EfficientUseofEnergyinContainerCranes.In:PortTechnologyInternational(48),p.1–3.Isavailableonlineat:https://library.e.abb.com/public/c47547763b-b5d2a6852577f200706488/2010%20ABB%20Crane%20Systems%20PT48%20Fredrik%20J%20Johanson.pdf,checkedon19.02.2019.Kaffka,Jan;Clausen,Uwe,Miodrag,Zoran;Pitsch,Holger(2015):AllokationvonEmissions-wertenaufBehälterebeneinmultimodalenUmshclagsanlagenmittelsSimulation.In:MarkusRabeandUweClausen(Hg.):SimulationinProductionandLogistics.Stuttgart:FraunhoferIRBVerlag,p.365–574.Isavailableonlineat:http://www.asim-fachtagung-spl.de/asim2015/papers/Proof_137_Kaffka-V3.pdf,checkedon19.02.2019.Kemme,Nils(2013):DesignandOperationofAutomatedContainerStorageSystems.BerlinHeidelberg:SpringerVerlag.Isavailableonlineat:https://www.springer.com/de/39book/9783790828849,checkedon29.01.2019.Konecranes(2019):LIFTAGV.Isavailableonlineat:https://www.konecranes.at/kra-neund-hebezeuge/containerumschlag/automatisierte-containertransportfahrzeuge/lift-agv,checkedon04.02.2019.Krämer,Iven;Bargen,Uwevon(2018):NachhaltigkeitsperspektivenanderSchnittstelleglobalerSupplyChains-HäfenalsTreibervonGreenPorts-Strategien.In:IrinaDovbischuk,GuidoSiestrupandAxelTuma(Hg.):NachhaltigeImpulsefürProduktionundLogistikma-nagement.Festschriftzum60.GeburtstagvonProf.Dr.Hans-DietrichHaasis.Wiesbaden:SpringerGabler,p.153–166.Kreuzer,Manne;Konecranes(2018):ElektrifizierungderSchwergewichte.Marktprognosen.Isavailableonlineat:https://www.elektroniknet.de/markttechnik/automotive/elektrifizie-rung-der-schwergewichte-149378.html,checkedon04.02.2019.lifestrom(2018):WelcheGroßstadthatdenhöchstenStromverbrauch?Isavailableonlineat:https://www.lifestrom.de/magazin/welche-grossstadt-hat-den-hoechstenstromverbrauch.Martín-Soberón,AnaMaría;Monfort,Arturo;Sapina,Rafael;Monterde,Noemí;Calduch,David(2014):AutomationinPortContainerTerminals.XICongresodeIngenieríadelTransporte(CIT2014).In:Procedia-SocialandBehavioralSciences160,p.195–204.Isavailableonlineat:https://www.sciencedirect.com/science/article/pii/S1877042814062326,checkedon29.01.2019.Rintanenetal.(2016):ContainerTerminalAutomation.APEMAInformationPaper,checkedon28.06.2019.Saanen,Yvo(2016):AGVversusL-AGVversusALV.Aqualitativeandquantitativecompa-rison.In:PortTechnologyInternational(70),p.30–35.Isavailableonlineat:https://www.researchgate.net/publication/304902856_AGV_versus_LAGV_versus_ALV_A_qualitative_and_quantitative_comparison.Saanen,Yvo;Johnson,Daniel;DeWaal,Arjen(2015):Howsimulaitonmodelingcansupportenvironmentalinitiativesatcontainerterminals.In:PortTechnologyInternational(45).Isavailableonlineat:https://www.tba.nl/resources/press+section/publications/PT45-24_4.pdf,checkedon12.02.2019.40Speer,Ulf(2017):OptimierungvonautomatischenLagerkransystemenaufContainertermi-nals.Wiesbaden:SpringerFachmedienWiesbadenGmbH.Isavailableonlineat:https://www.springer.com/de/book/9783658172695,checkedon29.01.2019.Steenken,Dirk;Voß,Stefan;Stahlbock,Robert(2004):Containerterminaloperationandoperationsresearch-aclassificationandliteraturereview.In:ORSpectrum26,p.3–49.DOI:10.1007/s00291-003-0157-z.Storch,Hansvon;Meinke,Insa;Claußen,Martin(Hg.)(2018):HamburgerKlimabericht.WissenüberKlima,KlimawandelundAuswirkungeninHamburgundNorddeutsch-land:SpringerSpectrum.Isavailableonlineat:https://link.springer.com/content/pd-f/10.1007%2F978-3-662-55379-4.pdf,checkedon19.02.2018.SVETRUCK(2019):StaplerimHafenbetrieb-wojedeMinutezählt.Isavailableonlineat:https://www.staplerberater.de/branchen/stapler-im-hafenbetrieb,checkedon04.02.2019.TianjinPortDevelopmentHol-dingsLimited(2018):2017AnnualReport.Isavailableonlineat:http://www.tianjinportdev.com/attachment/2018042516320100033121442_en.pdf.TianjinPortDevelopmentHoldingsLimited(2019):TIANJINPORTDEVELOPMENTANNOUNCES2018ANNUALRESULTS.TianjinPortDevelopmentAnnounces2018InterimResults27March2019.Isavailableonlineat:http://www.tianjinportdev.com/html/media.php,checkedon24.06.2019.TJBH(2018):„IntelligentPortPlan“topromoteupgradingofTianjinPort.Isavailableonlineat:http://english.tjbh.com/system/2018/01/04/030312353.shtml#,checkedon04.02.2019.Tran,ThanhKhanh(2012):Studyofelectricalusageanddemandatthecontainerterminal.DeakinUniversity.CentreforIntelligentSystemsResearch.Isavailableonlineat:http://dro.deakin.edu.au/eserv/DU:30048431/tran-studyelectrical-2012A.pdf,checkedon19.02.2019.turbosquid(2019):GummibereifterStapelkran-RTG.Isavailableonlineat:https://www.turbosquid.com/FullPreview/Index.cfm/ID/537282.Vitzthum,Thorsten;Claus,Thorsten;Herrmann,Frank(2017):EinflussvonMitarbeiterqua-lifikationszeitenimRahmennachhaltigerProduktionsplanung.In:SiegridWenzelandTImPeter(Hg.):SimulationinProduktionundLogistik2017.Kassel:Kasseluniversitypress,p.315–324.Isavailableonlineat:https://www.asimgi.org/fileadmin/user_upload_asim/ASIM_Publikationen_OA/AM164_OA/AM164_ASIM_SPL_2017_Kassel_Proceedings_OA.pd-f#page=22,checkedon19.02.2019.41Welt(Hg.)(2018):Container:ZahlenundFakten.AxelSpringerSE.Isavailableonlineat:htt-ps://www.welt.de/print/welt_kompakt/kultur/article176663554/Container-Zahlen-und-Fak-ten.html,zuletztaktualisiertam25.05.2018,checkedon30.01.2019.Whelan,Sam(2019):TaiwanPortsgroupsetstoughecotargets.In:GreenPort(1),p.24.WorldBank(2019):Containerporttraffic.(TEU:20footequivalentunits).Isavailableonlineat:https://data.worldbank.org/indicator/IS.SHP.GOOD.TU,checkedon30.01.2019.WorldPortSource(2012):PortofTianjin.PortCommerce.Isavailableonlineat:http://www.worldportsource.com/ports/commerce/CHN_Port_of_Tianjin_521.php.Yang,Lei;Cai,Yiji;Zhong,Xiaozhe;Shi,Yongqiang;Zhang,Zhiyong(2017):ACarbonEmis-sionEvaluationforanIntegratedLogisticsSystem.ACaseStudyofthePortofShenzhen.In:Sustainability9(3),p.1–23.Isavailableonlineat:https://pdfs.semanticscholar.org/33ab/d1eb8f675f5ef85bf1f784bbea2ba4808eae.pdf,checkedon12.02.2019.Yang,Rui;Li,Qing(2017):Researchonthesystemtechnologyforautomatedcontainertermi-nal.In:IEEEIndustrialElectronics(IE)(Hg.):ProceedingsoftheThe29thChineseControlandDecisionConference(2017CCDC).201729thChineseControlandDecisionConference(CCDC).Chonqing,China,28-30May,p.3463–3466.Isavailableonlineat:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7979105,checkedon29.01.2019.DeutscheGesellschaftfürInternationaleZusammenarbeit(GIZ)GmbHRegisteredofficesBonnundEschbornGIZinChinaTayuanDiplomaticOfficeBuilding2-514LiangmaheSouthStreet,ChaoyangDistrict100600Beijing,P.R.ChinaT+86(0)1085275589F+86(0)1085275591Einfo@giz.deIwww.giz.deIwww.sustainabletransport.org