TableofContentsExecutiveSummary……………………………………………………………………………………………..…………..1LegislativeLanguage…………………………………………………………………………………………………..……..3Foreword…………………………………………………………………………………..…………………………………………..5Introduction………………………………………………………………………………………………………..…………..6A:NationalDecarbonizationGoals………………………………………………………………….……..…………10H2@ScaleEnablerforDeepDecarbonization……………………………………………..……………..…………..12HydrogenProductionandUseintheUnitedStates……………………..…………………………..…………..14OpportunitiesforCleanHydrogentoSupportNet-Zero…..…………………………………..…………..17ChallengestoAchievingtheBenefitsofCleanHydrogen…..…………………………………..…………..24B:StrategiestoEnabletheBenefitsofCleanHydrogen……..……………………………………………27Strategy1:TargetStrategic,High-ImpactUsesofCleanHydrogen………………………………..………29Cleanhydrogeninindustrialapplications……………………………..…………………………………..………29Cleanhydrogenintransportation……………………………..……………………….………………………………..………32Powersectorapplications……………………………..………………………………………….…..……………………………34CarbonIntensityofHydrogenProduction……………………………..…………………………………..………36Strategy2:ReducetheCostofCleanHydrogen……………………………..…………………………………..………39HydrogenProductionThroughWaterSplitting……………………………..…………………………………..………40HydrogenProductionfromFossilFuelswithCarbonCaptureandStorage.……………………..………42HydrogenProductionfromBiomassandWasteFeedstocks……………………….…………………..………45OtherSystemCosts……………………………..………………………………………………………………………………………45Strategy3:FocusonRegionalNetworks……………………………..……………………………………………..………48Regionalproductionpotential……………………………..………………………………………………………..………50Regionalstoragepotential……………………………..…………………………………………………………………..………52Regionalend-usepotential……………………………..…………………………………………………………………..………54SupportingEachStrategy……………………………..…………………………………………………………………..………56C:GuidingPrinciplesandNationalActions………………………………………………………………..………58GuidingPrinciples……………………………..……………………………………..…………………………..…………..………58ActionsSupportingtheU.S.NationalCleanHydrogenStrategyandRoadmap..…………………61ActionsandMilestonesfortheNear,Mid,andLong-term……………………………..…….………………68PhasesofCleanHydrogenDevelopment……………………………..…………………………………..…………………73CollaborationandCoordination……………………………..……………………………………..…………………………77Conclusion……………………………..……………………………………..………………………………………………….………80Acknowledgments……………………………..……………………………………………………………..……..………..………81GlossaryofAcronyms……………………………..……………………………………..…………….……………..………82References……………………………..……………………………………..…………………………………..…..…………………83AppendixA……………………………..……………………………………..………………………………………………….………951U.S.DepartmentofEnergyExecutiveSummaryGivenitspotentialtohelpaddresstheclimatecrisis,enhanceenergysecurityandresilience,andcreateeconomicvalue,interestinproducingandusingcleanhydrogenisintensifyingbothintheUnitedStatesandabroad.Zero-andlow-carbonhydrogenisakeypartofacomprehensiveportfolioofsolutionstoachieveasustainableandequitablecleanenergyfuture.TheUnitedStatesissteppinguptoaccelerateprogressthroughhistoricinvestmentsincleanhydrogenproduction,midstreaminfrastructure,andstrategicallytargetedresearch,development,demonstration,anddeployment(RDD&D)inthiscriticaltechnology.InNovember2021,Congresspassed,andPresidentJosephR.Biden,Jr.signedintolawtheInfrastructureInvestmentandJobsAct(PublicLaw117-58),alsoknownastheBipartisanInfrastructureLaw(BIL).Thishistoric,once-in-a-generationlegislationauthorizesandappropriates$62billionfortheU.S.DepartmentofEnergy(DOE),including$9.5billionforcleanhydrogen.Furthermore,inAugust2022,PresidentBidensignedtheInflationReductionAct(IRA)intolaw(PublicLaw117-169),whichprovidesadditionalpoliciesandincentivesforhydrogenincludingaproductiontaxcreditthathasfurtherboostedaU.S.marketforcleanhydrogen.Thisreportsetsforththe“U.S.NationalCleanHydrogenStrategyandRoadmap.”Thereportwasinformedbyextensiveindustryandstakeholderfeedbackincludingworkshopsandlisteningsessions,writtencommentsfrommorethan50organizations,andongoingengagement.Inaddition,thisroadmapsetsforthanallofgovernmentapproachtocleanhydrogen,withcontributionsacrossmultipleagenciesaswellaskeyexpertsintheExecutiveOfficeofthePresident.Thisinclusiveandcollaborativeapproachiscriticaltothesuccessofthisexpansivetechnology.Thereportismeanttobealivingstrategythatprovidesasnapshotofhydrogenproduction,transport,storage,anduseintheUnitedStatestoday,aswellasanassessmentoftheopportunityforhydrogentocontributetonationaldecarbonizationgoalsacrosssectorsoverthenext30years.Thereportwillcontinuetobeupdatedwithcollaborationacrossgovernmentthroughinteragencycoordination.Pathwaysforcleanhydrogentodecarbonizeapplicationsareinformedbydemandscenariosfor2030,2040,and2050withstrategicopportunitiesfor10millionmetrictonnes(MMT)ofcleanhydrogenannuallyby2030,20MMTannuallyby2040,and50MMTannuallyby2050.ThesevaluesarebasednotonlytheopportunityforcleanhydrogenproductionintheU.S.,butondemandforcleanhydrogenuseacrosssectors,informedbyachievingmarketcompetitivenessinspecificapplications.UsingcleanhydrogencanreduceU.S.emissionsapproximately10percentby2050relativeto2005,1consistentwiththeU.S.Long-TermClimateStrategy.2ThirdpartyanalysisinDOE’sPathwaystoCommercialLiftoffreportestimatesthatby2030,thehydrogeneconomycouldalsoresultin100,000netnewdirectandindirectjobsduetothebuild-outofnewcapitalprojectsandcleanhydrogeninfrastructure.Thesejobsincludebothdirectjobslikeengineeringandconstruction,andindirectjobslikemanufacturingandrawmaterialsupplychains.31U.S.NationalCleanHydrogenStrategyandRoadmapRealizingtheseopportunitiesforcleanhydrogenwillrequirelowercostofproduction,thebuildoutofmidstreaminfrastructure,andincreasedhydrogendemandinspecificsectorswheretherearefewercost-competitiveortechnicallyfeasiblealternativesfordecarbonization.Ashydrogentechnologiesimproveandcostsfall,wewillupdatethisreportwithanalysesassessingtheeconomicallyandenvironmentallyoptimaluseofhydrogeninkeysectors,theevolvinglandscapeofproductionannouncementsandofftakecontracts,howprojectdevelopersareprioritizingenergyandenvironmentaljustice,andotherrelateddevelopments.ThisroadmapisbasedonprioritizingthreekeystrategiestoensurethatcleanhydrogenisdevelopedandadoptedasaneffectivedecarbonizationtoolformaximumbenefittotheUnitedStates:(1)Targetstrategic,high-impactusesforcleanhydrogen.Thiswillensurethatcleanhydrogenwillbeutilizedinthehighestvalueapplications,wherelimiteddeepdecarbonizationalternativesexist.Specificmarketsincludetheindustrialsector(e.g.,chemicals,steelandrefining),heavy-dutytransportation,andlong-durationenergystoragetoenableacleangrid.Additionallonger-termopportunitiesincludethepotentialforexportingcleanhydrogenorhydrogencarriersandenablingenergysecurityforourallies.(2)Reducethecostofcleanhydrogen.TheHydrogenEnergyEarthshot(HydrogenShot)launchedin2021willcatalyzebothinnovationandscale,stimulatingprivatesectorinvestments,spurringdevelopmentacrossthehydrogensupplychain,anddramaticallyreducingthecostofcleanhydrogen.Effortswillalsoaddresscriticalmaterialandsupplychainvulnerabilitiesanddesignforefficiency,durability,andrecyclability.Togetherwithinvestmentinmidstreaminfrastructure(storage,distribution),theseinitiativescanreducenotonlytheproductioncost,butalsothedeliveredcost,ofcleanhydrogen.(3)Focusonregionalnetworks.InvestinginandscalingRegionalCleanHydrogenHubswillenablelarge-scalecleanhydrogenproductionclosetohighpriorityhydrogenusers,allowingthesharingofacriticalmassofinfrastructure.Also,theseinvestmentswilldrivescaleinproduction,distribution,andstoragetofacilitatemarketliftoff.Properlyimplemented,theseregionalnetworkswillcreateplace-basedopportunitiesforequity,inclusion,andsustainability.Prioritieswillincludereducingenvironmentalimpacts,creatingjobs–includinggood-payingunionjobs–securinglong-termofftakecontractsandjumpstartingdomesticmanufacturingandprivatesectorinvestment.WhileCongressrequiredtheU.S.DepartmentofEnergy(DOE)todevelopthisnationalstrategyandroadmap,activitieswillincludecollaborationacrossmultiplefederalagenciesincludingtheU.S.DepartmentsofAgriculture,Commerce,Defense,Energy,Interior,Labor,State,Transportation,andTreasury,theEnvironmentalProtectionAgency,theNationalAeronauticsandSpaceAdministration,theNationalScienceFoundation,andtheOfficeofScienceandTechnologyPolicy,inclosecoordinationwiththeExecutiveOfficeofthePresident.Federalagencieswillalsocollaboratewithindustry,academia,nationallaboratories,localandTribalcommunities,theenergyandenvironmentalandjusticecommunities,laborunions,andnumerousstakeholdergroupstoaccelerateprogressandmarketliftoff.Thisroadmapestablishesconcretetargets,market-drivenmetrics,andtangibleactionstomeasuresuccessacrosssectors.Prioritizingcommunityengagementanduseofcommunitybenefitsplanswillalsobekeytoaddresspotentialenvironmentalconcernsandensureequityandjusticeforoverburdened,underserved,andunderrepresentedindividualsandcommunities.ThegoalssetforthinthisstrategyaimtodeliverthemaximumbenefitsofcleanhydrogentotheAmericanpeopleandtheglobalcommunity.2U.S.NationalCleanHydrogenStrategyandRoadmapLegislativeLanguageThisreportrespondstothelegislativelanguagesetforthinSection40314oftheInfrastructureInvestmentandJobsAct(PublicLaw117-58),alsoknownastheBipartisanInfrastructureLaw,specificallythatwhichamendsTitleVIIIoftheEnergyPolicyActof2005(EPACT-2005)byaddingSection814-NationalCleanHydrogenStrategyandRoadmap.Section814states:(A)DEVELOPMENT.—(1)INGENERAL.—Incarryingouttheprogramsestablishedundersections805and813,theSecretary,inconsultationwiththeheadsofrelevantofficesoftheDepartment,shalldevelopatechnologicallyandeconomicallyfeasiblenationalstrategyandroadmaptofacilitatewidescaleproduction,processing,delivery,storage,anduseofcleanhydrogen.(2)INCLUSIONS.—Thenationalcleanhydrogenstrategyandroadmapdevelopedunderparagraph(1)shallfocuson—(a)establishingastandardofhydrogenproductionthatachievesthestandarddevelopedundersection822(a),includinginterimgoalstowardsmeetingthatstandard;(b)(i)cleanhydrogenproductionandusefromnaturalgas,coal,renewableenergysources,nuclearenergy,andbiomass;and(ii)identifyingpotentialbarriers,pathways,andopportunities,includingFederalpolicyneeds,totransitiontoacleanhydrogeneconomy;(c)identifying—(i)economicopportunitiesfortheproduction,processing,transport,storage,anduseofcleanhydrogenthatexistinthemajorshalenaturalgas-producingregionsoftheUnitedStates;(ii)economicopportunitiesfortheproduction,processing,transport,storage,anduseofcleanhydrogenthatexistformerchantnuclearpowerplantsoperatinginderegulatedmarkets;and(iii)environmentalrisksassociatedwithpotentialdeploymentofcleanhydrogentechnologiesinthoseregions,andwaystomitigatethoserisks;(d)approaches,includingsub-strategies,thatreflectgeographicdiversityacrossthecountry,toadvancecleanhydrogenbasedonresources,industrysectors,environmentalbenefits,andeconomicimpactsinregionaleconomies;(e)identifyingopportunitiestouse,andbarrierstousing,existinginfrastructure,includingallcomponentsofthenaturalgasinfrastructuresystem,thecarbondioxidepipelineinfrastructuresystem,end-uselocaldistributionnetworks,end-usepowergenerators,LNGterminals,andotherusersofnaturalgas,forcleanhydrogendeployment;(f)identifyingtheneedsforandbarriersandpathwaystodevelopingcleanhydrogenhubs(including,whereappropriate,cleanhydrogenhubscoupledwithcarboncapture,utilization,andstoragehubs)that—(i)areregionallydispersedacrosstheUnitedStatesandcanleveragenaturalgastothemaximumextentpracticable;(ii)candemonstratetheefficientproduction,processing,delivery,anduseofcleanhydrogen;(iii)includetransportationcorridorsandmodesoftransportation,includingtransportationofcleanhydrogenbypipelineandrailandthroughports;and(iv)whereappropriate,couldserveasjointcleanhydrogenandcarboncapture,utilization,andstoragehubs;(g)prioritizingactivitiesthatimprovetheabilityoftheDepartmenttodeveloptoolstomodel,analyze,andoptimizesingle-input,multiple-outputintegratedhybridenergysystemsandmultiple-input,multiple-outputintegratedhybridenergysystemsthatmaximizeefficiencyinprovidinghydrogen,high-valueheat,electricity,andchemicalsynthesisservices;3U.S.DepartmentofEnergy(h)identifyingtheappropriatepointsofinteractionbetweenandamongFederalagenciesinvolvedintheproduction,processing,delivery,storage,anduseofcleanhydrogenandclarifyingtheresponsibilitiesofthoseFederalagencies,andpotentialregulatoryobstaclesandrecommendationsformodifications,inordertosupportthedeploymentofcleanhydrogen;and(i)identifyinggeographiczonesorregionsinwhichcleanhydrogentechnologiescouldefficientlyandeconomicallybeintroducedinordertotransitionexistinginfrastructuretorelyoncleanhydrogen,insupportofdecarbonizingallrelevantsectorsoftheeconomy.(B)REPORTSTOCONGRESS.—(1)INGENERAL.—Notlaterthan180daysafterthedateofenactmentoftheInfrastructureInvestmentandJobsAct,theSecretaryshallsubmittoCongressthecleanhydrogenstrategyandroadmapdevelopedundersubsection(a).(2)UPDATES.—TheSecretaryshallsubmittoCongressupdatestothecleanhydrogenstrategyandroadmapunderparagraph(1)notlessfrequentlythanonceevery3yearsafterthedateonwhichtheSecretaryinitiallysubmitsthereportandroadmap.”4U.S.DepartmentofEnergyForewordMorethanhalfacenturyago,theU.S.moonshotinitiativeputthefirsthumanbeingsonthemoon,usinghydrogenasafuelforrocketpropulsionandAmerican-madefuelcellson-boardthespacecraft.Sincethen,theNationhascontinuedtobeaworldleaderinhydrogenandfuelcells.FederalagenciesincludingtheNationalAeronauticsandSpaceAdministration;theU.S.DepartmentsofCommerce,Defense,Energy,andTransportation;theEnvironmentalProtectionAgency;andothershaveallhaddecadesofactivitiesrelatedtohydrogentechnologies.Investmentsfromgovernmentagencies,suchastheU.S.DepartmentofEnergy(DOE)haveresultedinmorethan1,200hydrogenandfuelcellpatents,30commercialtechnologies,andmorethan65technologiesthatcouldbecommercialwithinthenextseveralyears.4RDD&Dfundedbygovernmentwithprivatesectorcostsharehasslashedthecostofhydrogenandfuelcelltechnologiesandresultedinthousandsofcommerciallyavailablesystemsinthemarketsuchasforklifts,stationarypowerunits,andelectrolyzersystems.BuildingoffthemoonshotandinresponsetoPresidentBiden’srequesttotheSecretaryofEnergytoaccelerateprogresstowardsmeetingtheNation’sclimategoals,DOElaunchedHydrogenShotwithaboldandambitiousgoalof“111”—$1per1kilogramofcleanhydrogenin1decade—tounlockthepotentialforhydrogenacrosssectors.5Acceleratingthepaceandscaleofinnovationintandemwithrapid,privatesectoruptakeofcleanhydrogentechnologies,isnowcriticaltomeetthegoalssetforthinthisnationalstrategy.Ifcleanhydrogenisscaledglobally,thehydrogenindustryhasprojectedthepotentialfor$2.5trillioninannualrevenuesand30millionjobsglobally,alongwith20percentglobalemissionsreductionsby2050.6TheUnitedStatesalreadyproducesmorethan10percentoftheglobalhydrogensupplyandplaysanimportantroleindevelopingtheglobalhydrogeneconomy.7TherecentDOEReport,PathwaystoCommercialLiftoff:CleanHydrogen,describedseveralfutureU.S.marketscenarios,emphasizingthattheindustrialsectorwoulddrivegrowththrough2030andthatavailabilityofinfrastructurewouldserveasakeyinflectionpoint.3ModelingwithintheLiftoffreportalsoindicatedthatelectrolysishasstrongpotentialforgrowthasameansofhydrogenproduction,andlarge-scalegrowthinelectrolysiswouldcreatedemandforothercleanenergyresources.Forexample,ifover90percentofhydrogenisproducedviaelectrolyis,in2030,thisproductioncouldrequireupto200GWofnewrenewablesoruseofabout50-70GWofnuclearpower.8Thecountrycanstrengthenitsenergyleadership,createsignificantnewinvestmentandjobopportunities,andhelptheworlddecarbonizebyadvancingandharnessinghydrogentechnologiesinasustainable,competitive,andequitablemanner.TheNationisinauniquepositiontolead,givenitsresearch,development,anddeploymentprowess,alongwithabundantsupplies,ofenergyresourcesincludingrenewables,nuclear,fossil,waste,andothercarbon-basedresourcescoupledwithcarboncaptureandsequestration.HistoricinvestmentsthroughtheBipartisanInfrastructureLawandInflationReductionActandthecreationofthisnationalstrategyandroadmapforcleanhydrogenarespurringmomentumtowardsachievingthebenefitsofcleanhydrogen.Accelerationiskeytomeetingourclimategoals.However,thismustbedoneinastrategicandholisticway,takingintoconsiderationthepotentialroleofhydrogenwithinaportfolioofsolutionstotackletheclimatecrisis.Deploymentsdependonanunderstandingofoptimalgeographicregionswherehydrogenmaybemostadvantageousfromanoverallemissions,resilience,equity,andsustainabilityperspective.Thisroadmapisoneoftheearlystepsintheprocessofacceleration.ItisonlythebeginningandwillsetthestageforfurtherupdatesandrefinementsasrequiredintheBILenactment,nolessfrequentlythaneverythreeyears.5U.S.DepartmentofEnergyIntroductionThe2020sisadecisivedecadefortheworldtoconfrontclimatechangeandavoidtheworstandirreversibleimpactsofthecrisisbykeepingthegoalofa1.5-degreeCelsiuslimitonglobalaveragetemperaturerisewithinreach.9TheBiden-HarrisAdministrationhasestablishedambitiousgoalstoreducegreenhousegaspollutionfrom2005levelsby50to52percentin2030undertheParisAgreement,createacarbonpollution-freepowersectorby2035,andreachnet-zeroemissionsnolaterthan2050.10,11TheWhiteHousealsolaunchedthelandmark,first-of-its-kindJustice40Initiative,whichpledgesthatatleast40percentofoverallbenefitsfromFederalinvestmentsinclimateandcleanenergybedeliveredtodisadvantagedcommunities.12Manyvitalhydrogenprogramsmovingforward,includingDOE’sRegionalCleanHydrogenHubsProgram,andtheCleanHydrogenManufacturingandRecyclingResearch,DevelopmentandDemonstrationProgram,areincludedintheJustice40Initiative.13Inaddition,PresidentBidensignedExecutiveOrder14025declaringitthepolicyoftheAdministration“toencourageworkerorganizingandcollectivebargaining.”ThisisinresponsetothesteadydeclineinuniondensityintheUnitedStates,thelossofworkerpowerandvoiceinworkplacesandcommunitiesacrossthecountry,andtheresultingconsequencesforAmericanworkersandtheeconomy,includingweakeningandshrinkingAmerica’smiddleclass.Hydrogenisanopportunitytosupportaskilledworkforceandunionjobsacrossarangeofsectors,includingnewopportunitiesforworkerstransitioningfromfossilenergyemploymentandforindividualsdeniedaccesstohigh-qualityemployment.HydrogenisonepartofacomprehensiveportfolioofenergytechnologiesthatcansupporttheNation’stransitiontonet-zerowhileleveragingregionalresourcesandcreatingequitableandsustainablegrowth.Thedevelopmentanduseofhydrogentechnologieswilltakeintoconsiderationmultiplesupplychainpathwaysacrosssectorsforthemostefficient,affordable,andsustainablemarketadoption.Sectorsthataredifficulttodecarbonizewithtraditionalapproachesareexpectedtobecomeprioritymarketsforcleanhydrogen,suchaschemicalsmanufacturing,steelproduction,heavy-dutytransportation,andproductionofliquidfuels.Hydrogenisalsoseenasanenablingtechnology—enablingrenewablesthroughlong-durationenergystorageandofferingflexibilityandmultiplerevenuestreamstocleanpowergenerationsuchastoday’snuclearfleetaswellasadvancednuclearandotherinnovativetechnologies.Tounlockthemarketpotentialforcleanhydrogen,DOElaunchedtheHydrogenEnergyEarthshot(HydrogenShot)5inJune2021,toreducethecostofcleanhydrogenby80percentto$1per1kilogramin1decade(“111”).TheHydrogenShotisthefirstofDOE’sEnergyEarthshots,whichaimtoacceleratebreakthroughsofmoreabundant,affordable,andreliablecleanenergysolutionswithinthedecadewhilecreatinggood-payingunionjobsandgrowingtheeconomy.Buildingonthismomentum,theInfrastructureInvestmentandJobsAct(IIJA),alsoknownastheTheU.S.NationalCleanHydrogenStrategyandRoadmapalignswiththeAdministration’sgoals,including:(1)A50%to52%reductioninU.S.GHGemissionsfrom2005levelsby2030(2)100%carbonpollution-freeelectricityby2035(3)NetzeroGHGemissionsnolaterthan2050(4)40%ofthebenefitsofFederalclimateinvestmentsaredeliveredtodisadvantagedcommunities.6U.S.NationalCleanHydrogenStrategyandRoadmapBipartisanInfrastructureLaw(BIL),wassignedbyPresidentBidenonNovember15,2021,makingaonce-in-a-generationinvestmentintheNation’sinfrastructureandcompetitivenesstodeliveramoreequitablecleanenergyfuturefortheAmericanpeople.14MajorinvestmentsmadebytheBILwillaccelerateprogresstowardtheHydrogenShotandstimulatenewmarketsforcleanhydrogen.Theseinvestmentsandinitiativesinclude:•$1billionforaCleanHydrogenElectrolysisProgram15:Thisprogramwillimprovetheefficiencyandcost-effectivenessofelectrolysistechnologiesbysupportingtheentireinnovationchain—fromresearch,development,anddemonstrationtocommercializationanddeploymenttoenable$2/kgcleanhydrogenfromelectrolysisby2026.Fallingelectrolyzercapitalexpenditures(capex)willbeanessentialdriverofearlycost-downsforcleanhydrogenproductionviaelectrolysis.•$500millionforCleanHydrogenManufacturingandRecyclingRDD&DActivities16:ThiseffortwillalsosupportAmericanmanufacturingofcleanhydrogenequipment,includingprojectsthatimproveefficiencyandcost-effectivenessandsupportdomesticsupplychainsforkeycomponents.•$8billionforRegionalCleanHydrogenHubs17:Thisprovisionenablesthedemonstrationanddevelopmentofnetworksofcleanhydrogenproducers,potentialconsumers,andconnectiveinfrastructure.Thesehubswilladvancetheproduction,processing,delivery,storage,andend-useofcleanhydrogen,enablingsustainableandequitableregionalbenefitsaswellasmarketuptake.FullapplicationsfortheRegionalCleanHydrogenHubsfundingannouncementweredueApril7th,2023,andtheselectionnotificationsareexpectedinFall2023.18•CleanHydrogenProductionStandard19:ThisprovisioncallsforthedevelopmentofacleanhydrogenproductionstandardthatistobeapointofreferenceforspecifiedprogramsundertheBIL.TheCleanHydrogenProductionStandardservesasaguidetoactionsDOEtakesunderTitleVIIIoftheEnergyPolicyActof2005includingtheRegionalCleanHydrogenHubs,whichdirectsDOEtoselectprojectsthat“demonstrablyaidtheachievement”ofthestandard,andtheCleanHydrogenResearchandDevelopmentProgram,whichdirectsDOEtoestablishaseriesoftechnologycostgoalsorientedtowardachievingthestandard.•NationalCleanHydrogenStrategyandRoadmap20:ThisprovisionrequiresDOEtodevelopatechnologicallyandeconomicallyfeasiblenationalstrategyandroadmaptofacilitatewidescaleproduction,processing,delivery,storage,anduseofcleanhydrogen,within180daysoftheenactmentoftheBILandtobeupdatedeverythreeyearsafterthat.InadditiontotheBILprovisionsabove,IRA,signedintolawinAugust2022,providesaHydrogenProductionTaxCredit(PTC)thatwillfurtherincentivizetheproductionofcleanhydrogenintheU.S.21IRAalsosupportsthedevelopmentofdemandsectorsforcleanhydrogenthroughadditionalprograms,including:•Grantsandloansforautomanufacturingfacilitiestomanufacturecleanvehicles,includingfuelcellelectricvehicles(FCEVs);22•Grantsforindustrialdemonstrationprojects,includinghydrogentechnologiesfortheindustrialsector;23•Loanstohelpretool,repower,repurpose,orreplaceenergyinfrastructuretoavoid,reduce,utilize,orsequesterairpollutantsoranthropogenicemissionsofgreenhousegases;24•Competitivetaxcreditsforfacilitiesthatmanufacturehydrogenandfuelcelltechnologies,includingfuelcellvehiclesandfuelinginfrastructure;25•Ataxcreditforproducingsustainableaviationfuels26andatechnology-neutraltaxcreditfor7U.S.NationalCleanHydrogenStrategyandRoadmapcleanfuels,27whichcanincludehydrogenfeedstockintheproductionprocess;•Grantstoreduceemissionsatports,whichcouldfunddeploymentsoffuelcells;28,29•Grantsforcleanheavy-dutyvehicles,includingFCEVs;30and•Incentivesforthedeploymentofcarbondioxidecapture,utilization,andstorage.31DOEpreparedthisU.S.NationalCleanHydrogenStrategyandRoadmapbycollaboratingwithotherFederalagenciesandotherstakeholderstoidentifykeyactionstheNationshouldtaketoenablesuccessfulmarketadoptionofcleanhydrogentechnologiesinsupportofanet-zeroGHGemissioneconomyby2050.TheroadmapbuildsonthreedecadesofDOEstrategy,incollaborationwithotheragencies,thathasguidedfundingtoNationalLaboratories,industry,andacademiatowardresearch,development,demonstration,anddeployment(RDD&D)activitiesthathaveenabledthecommercializationofhydrogenandfuelcelltechnologies.TheDepartment’s2020HydrogenProgramPlan32describeditsstrategyforcoordinatedRDD&Dactivitiesthatenabletheadoptionofhydrogentechnologiesacrossmultipleapplicationsandsectors.TheU.S.nationalstrategyandroadmapareinformedbyDOE’sHydrogenProgramPlan,activitiesacrossagencies,multipleanalysisactivities,andtheindustry-ledU.S.hydrogenroadmappublishedin202033andfurtherbuildsupontools,models,andpriorworkbydiversestakeholderstoevaluatethegrowthpotentialandimpactsofnewhydrogenmarkets(e.g.,DOE’sreport,PathwaystoCommercialLiftoff:CleanHydrogen3).Thisreportcomprisesthreesections:SectionAoutlinestheoverarchinglong-termnationalstrategyfortheUnitedStatestoachieveitsclimategoals.ItprovidesasnapshotofhydrogenproductionanduseintheUnitedStatestodayandtheopportunitycleanhydrogencouldpotentiallyprovideincontributingtonationalgoalsacrosssectors.Pathwaysforcleanhydrogentodecarbonizeapplicationsareinformedbydemandscenariosfor2030,2040,and2050–withstrategicopportunitiesfor10millionmetrictonnes(MMT)peryearofcleanhydrogenby2030,20MMTperyearby2040,and50MMTperyearby2050.Thesescenariosarebasedonachievingcostcompetitiveness(producedanddelivered)toenabledemandinspecificsectorsandcanbebolsteredbycompliance-drivenandotherdemand-sideinitiatives.Highprioritysectorsarethosewithfewdecarbonizationalternatives(e.g.,decarbonizationthroughdirectelectrificationortheuseofbiofuels).Astechnologiesandmarketsdevelop,moredetailedanalyseswillbeforthcomingintherequiredupdatestothisdocument,includingtheoptimalsectorsforhydrogenuse,theevolvinglandscapeofproductionannouncements&offtakecontracts,andanexplorationofhowprojectdevelopersareprioritizingenergyandenvironmentaljustice.SectionBdescribesthechallengestorealizingthebenefitsofhydrogenintheUnitedStatesandthreeprimarystrategiestoaddressthem:(1)Focusonhard-to-decarbonizesectorsfortheuseofcleanhydrogen,(2)Reducetheproducedanddeliveredcostofcleanhydrogen,and(3)Focusonregionalnetworks,inthenear-termbyco-locatinglarge-scalecleanhydrogenproductionandend-use,includingthroughRegionalCleanHydrogenHubstoenablecriticalmasscommoncarrierinfrastructure,drivescale,andfacilitatemarketliftoff,thatcentersandleveragesplace-basedopportunitiesforequity,inclusion,andsustainability.Thissectionalsodescribespathwaystocleanhydrogenproduction,distribution,andstorageandtheirassociatedcoststodayandinthefuture.Mapsinthissectionillustrateresource,infrastructure,anddemandpotentialinregionsacrosstheUnitedStates.SectionCdescribesthesetofactionsthatcansupportanddeveloptheindustryinthenear,mid,TheU.S.NationalCleanHydrogenStrategyVision:“Affordablecleanhydrogenforanet-zerocarbonfutureandasustainable,resilient,andequitableeconomy.”8U.S.NationalCleanHydrogenStrategyandRoadmapandlong-term,alongsideguidingprinciplesandmetricstomeasureprogress.ThisstrategywillleverageU.S.strengthsinRDD&Dandmanufacturinginnovationandingenuitytoreduceemissions,increaseU.S.energyindependence,andbuildarobustdomesticmarketforcleanhydrogensupportedbydomesticsupplychainsandsustainable,qualityjobs,includinggood-payingunionjobs.Thestrategyalsotargetsinitiativestocreatenewregionaleconomicopportunitieswhilereducinggreenhousegas(GHG)emissionsandimprovingairquality.Thesebenefitscanfosterdiversity,equity,andinclusionandworkerempowermentandcollectivebargainingwhenprojectsarecoupledwithmeaningfulstakeholderengagementandongoingsupport.Long-termstrategiesincludeaU.S.leadershiproleinenablingenergysecurityandresiliencewithcleanhydrogen.TheNationalHydrogenStrategyapproacheshydrogenRDD&Dholistically,leveragingplace-basedapproachestomaximizepositivebenefitstotheNationandtheworld.9U.S.DepartmentofEnergyA:NationalDecarbonizationGoalsThetimeisnowforstrategic,bold,andconcreteactiontomeettheambitiousgoalssetbytheUnitedStatestotackletheclimatecrisis.Thesegoalsinclude100percentcarbonpollution-freeelectricityby2035andnet-zeroGHGemissionsby2050.34TheU.S.nationalclimatestrategy35laysoutalong-termapproachandpathwaysfortheUnitedStatestomeetits2030NationallyDeterminedContribution(NDC)towardglobalclimateobjectives—anambitious50to52percentreductionrelativeto2005emissions,asvisualizedinFigure1.Meetingthisambitionisonlyachievablethroughanall-hands-on-deckcalltoactionandaportfoliooftechnologiesandstrategiestoacceleratescale.Figure1:U.S.economy-widenetgreenhousegasemissions.Anet-zerosystemwillrequiretransformativetechnologiestobedeployedacrosssectors.35Achievingnet-zeroemissionseconomy-wideby2050requirestransformationaladvancesinenergyinfrastructureandmanyothersectorsoftheeconomy.Cleanhydrogencanserveasakeyenablerofourgoalduetoitsversatilityandpotentialtocomplementothercleantechnologiesinthreeofthemostenergyandemissions-intensivesectorsintheUnitedStates:industry,transportation,andelectricitygeneration.AsshowninFigure2,eachofthesesectorscontributessubstantiallytoannualU.S.greenhousegasemissions,andeachsector’sdecarbonizationstrategywillbedependentonitsnumeroussub-sectors,whichhavedistinctoperatingrequirements,cost/performancetargets,anddecarbonizationdrivers.10U.S.DepartmentofEnergyFigure2:U.S.netgreenhousegasemissionsprojectedto2050(horizontalbars),36relativetonationalgoalstoenableacleangridandnetzeroemissionsby2050(dashedlines).Transitiontoanet-zeroeconomywillrequireportfolioofstrategies,includingdecarbonizationofelectricity,electrificationandcleanfuels;reductioninwaste;reductionofnon-CO2emissions,suchasmethane;andscale-upofCO2removal,suchasthroughlandcarbonsinks.11Hydrogen,asaversatileenergycarrierandchemicalfeedstock,offersadvantagesthatcanalsoleverageallourNation’senergyresources—renewables,nuclear,andfossilfuelswithcarboncaptureandstorage(CCS)—andcancouplehigh-capacityfactorfirmpowerwithvariablegenerationtoofferresilienceandenergystorage.Itcanthenbeusedasafuelorfeedstockforapplicationsthatlackcompetitiveandefficientcleanalternatives.Thoughtherearemanyopportunitiesforhydrogen,anintegralcomponentofourstrategywillbeaholisticapproachthatincludesaddressingenvironmentalandenergyjusticeandequity.ThecleanhydrogenstrategyalsosupportstheAdministration’sJustice40Initiative,whichpledgesthatatleast40percentofoverallbenefitsfromFederalinvestmentsinclimateandcleanenergybedeliveredtodisadvantagedcommunities.12ThestrategiesandpathwayswillbedesignedtobenefitallAmericans,notonlyintermsofemissionsreductionbutalsoinpublichealth,economicgrowth,jobs–includinggood-payingunionjobs,andimprovingqualityoflife.11U.S.DepartmentofEnergyH2@ScaleEnablerforDeepDecarbonizationFigure3:DOE’sH2@Scaleinitiativetoenabledecarbonizationacrosssectorsusingcleanhydrogen.37AsshowninFigure3,whichillustratestheH2@Scale®visionlaunchedin2016byDOEanditsNationalLaboratories,cleanhydrogencanbeproducedfromdiversedomesticresourcesandusedacrosssectors.37Productioncanbecentralizedordecentralized,grid-connectedoroff-grid,offeringscalability,versatility,andregionality.Cleanhydrogenprovidesmoreoptionsacrosssectorsandcancomplementtoday’sconventionalgridandnaturalgasinfrastructure.Ratherthanonly“electronstoelectrons”pathwayssuchastheelectricgridtobatteries,hydrogencanbestoredandusedwhereelectrificationmaybechallenging.Severaltechnologiescanproducecleanhydrogen,includingelectrolyzerspoweredbytheNation’sgrowingshareofcleanenergy,methanereformationwithcarboncaptureandstorage,gasification,orthermalconversionofbiomassand/orsolidwasteswithcarboncaptureandstorage,andmanyotheremergingtechnologies.Initialdeploymentsusingcleanhydrogenareexpectedtoleverageregionalenergyresourcesandtargetindustriesthatcurrentlyrelyonconventionalnaturalgastohydrogentechnologies(withoutCCS).EPAproposesthathydrogenco-firingwithnaturalgasisthebestsystemofemissionsreductionforcertainsubcategoriesoffossilfuelpoweredplants,anditwouldbeamongcomplianceoptionsforCO2emissionlimitsonfossilfuel-firedpowerplantsunderSection111oftheCleanAirAct.38Whiletheseindustriescanrapidlygeneratescaleandcreatenear-termimpactintermsofemissionsreductions,concertedeffortsmustbemadetosolicitandaddresscommunityconcernsaroundNOxemissions,safetyandleakagedetection.Increasedtransparencymustincludeacknowledgingthesepotentialriskswhilejuxtaposingthemwiththeextensivesafetytraining,monitoringanddetectiontechnologiesthathavebeendeveloped.Thiskindofcommunityengagementwillbeacriticalpartoftheprocessfordeployingnewhydrogentechnologiesthatcandisplacefossilfuelsinothersectors.Theseinitialuse-casesarealsofrequentlyco-located,meaningtheycancapitalizeonlow-costhydrogenproductionwithoutincurringmidstreamdistribution/storagecosts.Asregionalinfrastructure12U.S.NationalCleanHydrogenStrategyandRoadmapscalesanddistribution/storagecostsfall,morenascentanddistributedcleanhydrogenusecaseswillofferattractivereturnoninvestment.Policymakersworldwiderecognizetheneedtocomplementelectrificationstrategieswithfuelslikecleanhydrogen.Numerousstudiesshowthepotentialroleofcleanhydrogeninglobalenergysystems,thoughestimatesvarysignificantly,asshowninFigure4.Countriesthathaveidentifiedhydrogenaspartoftheirdecarbonizationstrategyalsoseehydrogen’sroleasenablingenergysecurityandresilience.Figure4:Therangeofhydrogen’sroleinfinalenergyuseaccordingtoglobalandregionalestimatesshowsawiderangeofapplicationsineachsector.39Theactionslaidoutinthisroadmapwillbolsterrigorousanalyticalmodelsandframeworksandfosterglobalcollaborationtodeterminethebestuseofhydrogenandmaximizeimpact.BasedonseveralmodelsandanalysesfortheUnitedStates,Figure5laysouttheopportunityforhydrogen,increasingcleanhydrogenproductionfromnearlyzerotodayto10MMTperyearby2030,20MMTperyearby2040,and50MMTperyearby2050.Althoughclearlyambitious,thesegoalsareachievableandarebasedondemandscenariosassumingcostcompetitivenessforhydrogenuseinspecificsectorssuchasindustrialapplications,heavy-dutytransportation,andlong-durationenergystorage.Byachievinga5-foldincreaseinhydrogenproductionandutilizationby2050,totalGHGemissionsintheUnitedStatescoulddecreasebyapproximately10percentrelativeto2005levelswhenallhydrogeniscleanlyproduced.Asanalysescontinuetoberefinedandoptimized,governmentagencieswillcontinuetoassessthecleanest,mostsustainablepathwaysforhydrogenproductionthroughend-use,withparticularemphasisonplace-basedandregionalbenefits.Figure5:TheopportunityforcleanhydrogenintheUnitedStates.13U.S.DepartmentofEnergyHydrogenProductionandUseintheUnitedStatesCleanhydrogencanbeproducedthroughvariouspathways,includingwater-splittingusingrenewableornuclearpower,fromfossilfuelswithcarboncaptureandstorage,andbiomassorwastefeedstocks.Otherpathwaysinearlierstagesofdevelopmentincludethermochemical,biological,andphotoelectrochemicalprocesses.Theemissionsintensityofeachofthesepathwaysdependsonkeyvariables,suchascarboncapture,methaneleakratesorfugitiveemissions,andtheuseofcleanelectricity.Industryproducesabout10MMTofhydrogenperyearintheUnitedStates,7comparedtoroughly94MMTperyearglobally,40mostlyforthepetroleumrefining,ammonia,andthechemicalindustry.Someofthathydrogenisproducedandusedatthesamefacility,sothetotalhydrogenconsumptioncanbemodestlyhigher.7Figure6showstheallocationofhydrogenuseacrosssectorsin2021.Today,U.S.hydrogenproductiongeneratesabout100MMTofgreenhousegas(tonnesofCO2-equivalent)peryearonawell-to-gatebasis.41Figure6:ConsumptionofhydrogenintheUnitedStatesbyend-usein202142Tosupporttheseindustries,theUnitedStatescurrentlyhasapproximately1,600milesofdedicatedhydrogenpipeline43andthreegeologicalcaverns,includingtheworld’slargest,whichcanstore350gigawatt-hours(GWh)ofthermalenergy44orenoughtopower1.2millionhouseholdsforaweek.Outsideofpetroleumandfertilizerproduction,hydrogenuseisnowmakingitswayintootherend-useapplications.Theseincludemorethan50,000fuelcellforklifts,4nearly50openretailhydrogenfuelingstations,over80fuelcellbuses,morethan15,000fuelcellvehicles,andover500megawatts(MW)offuelcellsforstationaryandbackuppower(e.g.,fortelecommunications),asdetailedinFigure7.Figure7:ExamplesofhydrogenandfuelcelltechnologydeploymentsintheUnitedStates.14U.S.NationalCleanHydrogenStrategyandRoadmapFlagshipprojectsinindustryandenergystoragearealsoputtingtheUnitedStatesontheglobalmapintermsofhydrogendeployment.TheIntermountainPowerProjectbeingbuiltinUtahwillinclude840MWofpowergenerationusingblendsofnaturalgasandhydrogenproducedviaelectrolysis.45InLouisiana,theCleanEnergyComplexwillusemethanereformingwithCCSata95percentcaptureratetosupplycleanhydrogentoregionalmarketsandtoexportglobally.Thisprojectwillalsobetheworld’slargestcarboncaptureforsequestrationoperation,sequesteringmorethan5MMTofCO2peryear.46InTexas,AirProductsandAESareteaminguptobuildahydrogenproductionplantproducingover200metrictonsofhydrogenperdaybyelectrolysispoweredby1.4GWofrenewablewindandsolarelectricity.Thehydrogenfromthisprojectwillservegrowingdemandforzero-carbonfuels.47Asanotherexample,inNewYork,PlugPowerisbuildingacleanhydrogenplantwhichwillusea120MWelectrolyzertoproduceapproximately45metrictonsofhydrogenperdayusinghydropower.Thehydrogenproducedwillreplacefossilfuelsinapplicationssuchasheavy-dutytrucksandforklifts.48SeveralstatesandregionsacrosstheNationareactivelypursuingcleanhydrogenprojects,rangingfromproductionthroughend-use.Thepaceofnewprojectannouncementsisaccelerating.ThevaluesshowninFigure8reflectasnapshotofprojectsannouncedoroperationalby(a)December2022and(b)May2023basedonpubliclyavailableinformationandDOE-fundedprojectdata.Securinglong-term,credit-worthyofftakecontractswillhelpensurethesignificantpipelineofproductionannouncementsreachesfinalinvestmentdecision.Ifallannouncedprojectsproceedthroughtofinalinvestment,construction,andcommissioningby2030,theseprojectswouldcreatecleanhydrogensupplyof12MMT/year,surpassingtheDOEgoal.However,manyoftheprojectsawaitafinalinvestmentdecision.Securinglong-term,credit-worthyofftakecontractswillhelpensurethesignificantpipelineofproductionannouncementsreachesfinalinvestmentdecision.(a)CurrentlypubliclyannouncedcleanhydrogenproductionprojectsasofEOY2022,withtotalproductionpotentialof12MMT/year.(RepurposedfromDOE’sreport,PathwaystoCommercialLiftoff:CleanHydrogen3)15U.S.NationalCleanHydrogenStrategyandRoadmap(b)PlannedandinstalledPEMelectrolyzercapacityover1MW.Bubblesareforillustrativepurposesonlyandnotdrawntoscale.49Figure8:ExamplesofannouncedcleanhydrogentechnologydeploymentsintheUnitedStates.16U.S.DepartmentofEnergyOpportunitiesforCleanHydrogentoSupportNet-ZeroAsshowninFigure9,today’scommercialavailabilityofhydrogentechnologiesislimited.Newapplicationsforcleanhydrogeninthecomingdecade,however,couldincludeseveralopportunities,includingheavy-dutytransportation,theproductionofliquidfuelsformarineandaviationapplications,steelmaking,andglassmanufacturing.Itwillbeimportanttoprioritizehydrogendeploymentwhereotherhigh-efficiencyandlow-costoptions,suchaselectrification,arelesslikelytooccur.Asadditionalenergytechnologiesadvanceandtheentireenergysystemdecarbonizes,newdemandsforhydrogenmayemerge,includinglong-durationenergystoragetoenableacarbonpollution-freeelectricgridorstationaryheatandpowergeneration,includingcombinedheatandpowerusingfuelcellsandotherlow-orzero-emissiontechnologies.Overtime,thegrowthofcleanhydrogensupplyacrossthesesectorsmayalsospurthedeploymentoflarge-scaledistributioninfrastructurethatconnectsregionsoflow-costsupplywithlarge-scaledemand.Inallcases,formingregionalnetworkswilldependonunderstandingoptimalgeographicregionswherehydrogenmaybemostadvantageousfromanoverallemissions,resilience,resources,andsustainabilityperspective.Ifregionalnetworksprioritizeshared,open-accessinfrastructuretheycanhelptoreducethedeliveredcostofhydrogenbyloweringtransportandstoragecosts.Governmentagencieswillsolicitinputandfeedbackfromcommunitiesimpactedbylegacyfossilinfrastructureandclimatechange.FurtherelaborationofstakeholderengagementprocessesandactionsforadvancingenergyandenvironmentaljusticeisinSectionC.Figure9:Currentandemergingdemandsforhydrogen.5017U.S.DepartmentofEnergyTheBILrequiresDOEtodevelopaprogramtodemonstrateRegionalCleanHydrogenHubs,definedasanetworkofcleanhydrogenproducers,cleanhydrogenconsumers,andconnectiveinfrastructurelocated“incloseproximity”toeachother.17Co-locationofhydrogensupplyanddemandcanreducetheneedfornewlong-distanceinfrastructure,loweringthecostofearlymarketgrowthuntillarge-scale,stabledemanddevelopsregionallyandnationally.Federal,state,andlocalstakeholderscansupportthedeploymentofcleanhydrogenthroughtargetedregionaloutreachandthecreationofnetworkingopportunities,suchasDOE’sH2MatchmakeronlineportallaunchedinJanuary2022.51TheBILalsorequiresRegionalCleanHydrogenHubstotarget,“tothemaximumextentpracticable,”specificend-usesectors—including,forexample,powergeneration,industry,andtransportation.Inmanyapplicationswithinthesesectors,theuseofcleanhydrogencanenablea40-90percentreductionincradle-to-graveemissionsbydisplacingincumbentfossilfuels.52Themagnitudeofreductionsineachsectorvarieswidely,dependingontheperformanceoftheincumbenttechnologyandotheralternativesavailablefordecarbonization.Inaddition,DOE’sreport,PathwaystoCommercialLiftoff:CleanHydrogen,indicatesthathydrogencanplayacriticalroleinnet-zerogridresiliencewithincreasingrenewablepenetration.3ScenarioandTippingPointAnalysesForcleanhydrogentobecompetitivefromalong-termsustainablemarketperspective,itmustbeavailablebelowaminimumthresholdpricepoint,dependingonthefuelandprocessesitsusewoulddisplaceineachsector.Inpractice,particularlyduringthetransitionbeforecostparityisachieved,hydrogencanalsoprovidevaluesuchasgridservices,arbitrage,orflexibilityoffuelsusedinpowergeneration.However,acost-basedperspectiveprovidesaconservativeviewofmarketdemandpotential.Figure10depictsthepricerangeatwhichhydrogenwouldbecompetitivewithincumbentfuels(suchasdiesel,naturalgas,orcoal)invariousapplicationsandtheapproximatetimeframeatwhichlarge-scaledeploymentsofcleanhydrogenareexpectedtooccurineachsector.The“willingnesstopay”foreachapplicationreflectsthetotalpriceatwhichhydrogenmustbeavailabletotheend-user,includingthecostofproduction,distribution,andadditionalconditioningonsite,suchascompression,storage,anddispensing.Importantly,eachsectorhasdifferentonsiterequirements.Whilesomesectors,suchastransportation,haveahigherwillingnesstopay,infrastructurerequirements,suchascompressionanddispensingatfuelingstationsandthepotentialneedforliquefaction,cancontributesignificantlytothetotalcostofhydrogenexperiencedbytheend-user.IntheU.S.,thenichemarketforfuelcellforklifts,catalyzedbytheAmericanRecoveryandReinvestmentAct(ARRA)in2009,pavedthewayformorethan50,000fuelcellforkliftsatcommercialwarehousesaroundtheNationandover115forkliftfuelingstations.53Theseapplicationscanbecompetitiveathigherhydrogencostsduetofasterfuelingtimes,higheroperationalthroughput,andlessspacerequiredversusbatteryforklifts.Fuelcelltrucksandbusesofferanotheropportunityforearlymarketadoption;however,basedonrigorousanalysis54andindustryfeedbackthroughpriorworkshopsandcriticalreviewsoflabandDOEpublications,thetotalcosttotheend-user,includinginfrastructure,needstoreachabout$5/kg.Othermarkets—suchasbiofuels,chemicals,andsteel—requirelowercoststobecompetitiveinthelongterm.ThecurrentcostofcleanhydrogenproductionandtheHydrogenShotcosttargetforcleanhydrogenproduction(notincludingdownstreaminfrastructuresuchasdelivery,storage,anddispensing)aredepictedinthisfigureforcontext.18U.S.DepartmentofEnergyFigure10:Willingnesstopay,orthresholdprice,forcleanhydrogeninseveralcurrentandemergingsectors(includingproduction,delivery,andconditioningonsite,suchasadditionalcompression,storage,cooling,and/ordispensing).55Currentcostsofhydrogenproductiondepictedtonotincludeimpactsofregulatoryincentives,suchasthoseinIRA.Theamountofhydrogendemandattherespectivethresholdcostineachofthesesectorswilldependontheextenttowhichothercompetingandincumbenttechnologiesandfuelsevolve.Thewillingnesstopaywillalsodependonpoliciestorequireorincentivizeemissionsreductions,includingfederalrequirementsfornewpowerplantsandstatemandatesforemissionlimits.Figure11,below,depictsscenariosforthedemandexpectedineachsectorifcleanhydrogenisavailable(produced,delivered,anddispensed)atthethresholdpriceshown.Forinstance,approximately$5/kgforhydrogenproduced,delivered,compressed,anddispensedwouldpavethewayforearlyadoptersinthefuelcelltruckmarket.54Atapproximately$4/kg,scenarioanalyseshaveshownthat10-14percentofallmediumandheavy-dutyfuelcelltruckswoulddemandabout5-8MMT/yearofhydrogen.56Thelightershadedbarsrepresentamoreoptimisticdemandscenarioforeachmarketshown.Giventheuncertaintyinothervariablessuchasfuelcellcost,efficiency,durability,on-boardhydrogenstorage,andinfrastructure,aswellasthecostofincumbentfuelsandtechnologies,analyseswillcontinuetoberefined.However,theseresultsindicatelargepotentialvolumesforcleanhydrogendemand,assumingDOEtargetsforcleanhydrogencostsaremet.TaxcreditsandfinancingavailablethroughtheIRAhavethepotentialtosupportdeploymentofFCEVsthatcansupportdemandcreation.IRAappropriateda$2billiongrantand$3billionloanprogramforautomanufacturingfacilitiestomanufacturecleanvehicles,includingFCEVs.22EPAwilladministeradditionalIRA-createdprograms,includinga$1billiongrantprogramforcleanheavy-dutyvehicles,includingfuelcelltrucks,30and$2.25billionforreducingemissionsatports,whichcanincludefinancingFCEVdrayageequipment.2819U.S.DepartmentofEnergyFigure11:Scenariosshowingestimatesofpotentialcleanhydrogendemandinkeysectorsoftransportation,industry,andthegrid,assuminghydrogenisavailableatthecorrespondingthresholdcost.Figure12:Deploymentsofcleanhydrogentodecarbonizeindustry,transportation,andthepowergridcanenable10MMT/yearofdemandby2030,~20MMT/yearofdemandby2040,and~50MMTin2050.Othercurrent,emerging,andfuturemarketswithhigherrangesofuncertaintytoday,suchashydrogenexports,power-to-liquidfuels,specialtychemicals,andpetroleumrefiningcouldgenerateadditionaldemand.Figure12depictspotentialscenariosforend-useofcleanhydrogenin2030,2040,and2050,enablingatleast20MMTperyearby2040and50MMTperyearby2050.Thecleanhydrogenproductiontaxcredit,passedaspartoftheInflationReductionAct,willbringdowncostsofproductionandaccelerateeconomiesofscale,makingthethresholdhydrogenpricewithinreachformoreapplications.Inadditiontohydrogenandfuelcellsforthetruckingsector,hydrogenwillalsobeanessentialfeedstocktobiofuels,includingsustainableaviationfuels(SAF)andpower-to-liquidfuels,thatcoulddecarbonizeoffroadvehiclesandapplicationswheredirectelectrificationorfuelcellsmaynotbecompetitive.IftheU.S.replacesalljetfuelconsumptionwithSAFby2050,approximately2-6MMT/yearofhydrogencouldberequiredtoproduce35billiongallonsofSAFfrombiofuels.57Anadditional6MMT/yearwouldberequiredtoproduce4billiongallonsofpower-to-liquidfuelsusing44MMTofcarbondioxide(approximatelytheamountofconcentratedCO2currentlyavailablefromethanolplantsintheUnitedStates).58TwonewtaxcreditswerecreatedbytheIRAwillsupportthecreationoftheSAFindustryintheUSandsupportBidenAdministrationgoals.The40Btax20U.S.NationalCleanHydrogenStrategyandRoadmapcreditprovidesupto$1.75pergallonforSAFthathavelowerlifecycleemissionsreductionscomparedtopetroleum-basedjetfuel.26Thecreditisavailableuntil2025.After2025,SAFproducerscanclaim45Zcredits(thoughthesamefacilitycannotalsoclaim45Vcreditsforhydrogenproduction).ThegrowthoftheSAFindustrycancreatedemandforcleanhydrogen,whichcanlowerprocessemissionsofSAFproduction.59Hydrogencanalsoplayakeyroleindecarbonizingtheindustrialsectortoenableanet-zeroeconomyby2050,includingsteelmaking,chemicals,andhigh-temperatureindustrialheatgeneration.Dependingontheevolutionofcompetingoptions,theuseofhydrogeninironrefiningcouldaccountfor10-20percentofsteelmakingin2050,enablingabout1-3MMT/yearofcleanhydrogendemand.60Anadditional4-5MMT/yearofcleanhydrogencouldbeconsumedbyammoniaplantstodecarbonizealldomesticdemandforconventionaluses,suchasfertilizerproduction.58Sincehydrogenisanessentialfeedstockforammoniaproduction,andusingcleansourceswouldthereforebenecessaryfordecarbonization,theammoniamarketisexpectedtobeoneoftheearlyopportunitiesforcreatinglarge-scaledemandforcleanhydrogen.Ammoniaisacommoditychemicalusedforfertilizersaswellasotherspecialtychemicals.Itcanalsobeusedasahydrogencarrier,potentiallyallowingdiversemarketadoptionthatleveragesexistinginfrastructure.Inthemethanolsector,alternativestocleanhydrogenincludedeployingCCStechnologieswithconventionalfossilfeedstocksorusingbiomassfeedstock.IfcleanhydrogenwereusedforhalfoftheU.S.methanolsupplyin2050,1-3MMT/yearwouldberequiredtosatisfydemand.61Inadditiontoitschemicalproperties,hydrogencansupportdecarbonizationbydisplacingnaturalgasinsectorsthatrequirehigh-temperatureheat,anapplicationthatisdifficulttoelectrify.Theuseofpurehydrogenorblendsofcleanhydrogenandnaturalgasfor20-50percentofindustrialheatingdutyforhigh-temperatureheat(>550°C)forchemicalsandsteelmakingwouldgenerateapproximately1-3MMT/yearofdemand.62Theremainderofhigh-gradeindustrialheatingcanbedecarbonizedthroughalternativeprocesses,CCS,andotherlowcarbonfuels.Highconcentrationsofhydrogenareneededtoachievesignificantabatementofemissionssincetheenergycontentofhydrogenisonlyaboutathirdofnaturalgasbyvolume.Someapplicationswilluse100percenthydrogentofullydecarbonize.FederalfundingisbeingprovidedtosupportRD&Dforindustrialburnersthatcanuseupto100percenthydrogenandmaintainlowNOxemissions.63LifecycleanalysiswithintheHyBlendinitiativewillcharacterizethedecarbonizationpotentialofblends,accountingfordifferentapproachestoproducinghydrogen.AchievingtheAdministration’sgoalsfora100percentcleanelectricitygridwillcreatedemandforlong-durationenergystorage(LDES),wherehydrogencanalsoplayakeyrole.EstimatesofthemagnitudeofLDESrequiredinacleangridhavehighvariability,dependingonthedegreeofelectrification,buildoutoftransmissionlines,andtherateatwhichotheroffsettingtechnologies,suchasdirectaircapture,aredeployed.Basedonarangeofstudieswithvaryingassumptionsaroundtheseconstraints,itisestimatedthatabout4-8MMT/yearofhydrogenwouldbeneededin2050tosupplyenergystorageandpowergenerationfora100percentcleangrid.64Further,hydrogencansupportcarbonreductionsinotherpowersectorapplications;EPAproposestoincludehydrogenco-firingwithnaturalgasasacomplianceoptionforCO2emissionlimitsonfossilfuel-firedpowerplantsunderSection111oftheCleanAirAct.38Itshouldbeemphasizedthattheseareallcost-drivendemandscenariostoenablereachingnet-zeroby2050,andthereisscopeforflexibilityinthevolumesofhydrogendescribedaboveforeachsector.Initiallarge-scaledeploymentsofcleanhydrogenareexpectedtotargetindustrieswithestablishedsupplychainsandeconomiesofscale,suchasammoniaproductionandthepetrochemicalindustry.Thesedeploymentswillbesupplementedwithsmaller-scaledeploymentsinnewapplicationsandgrowingsectorsastheinfrastructuredevelops.BasedonthesuccessofearlydeploymentsandthemomentumprovidedbytheHydrogenShot,theUnitedStateshasanopportunitytoachieveaggressivegrowthinclean21U.S.NationalCleanHydrogenStrategyandRoadmaphydrogensupplyto20MMT/yearby2040and50MMT/yearby2050,asshowninFigure12.Thisdemand-basedopportunitycanbeachievedevenwhilefocusinghydrogenondecarbonizingkeysectorsoftheeconomythatcannotbeeasilyelectrifiedandcanhelpintegraterenewablesintoacleangrid.WhileFigure12depictsscenariosofdemandgrowth,thedemandsthatultimatelymaterializemayvaryduetoawiderangeofmarketforces,policies(suchastheproductiontaxcreditforcleanhydrogencreatedbytheInflationReductionAct)andregulations,andevolutionsintechnologyperformanceandcostsfeasibleby2050.AsensitivityanalysisaccountingforthesevariablesisdepictedinFigure13.Ineachsector,the“corerange”reflectstheamountofhydrogendemandestimatedfor2040and2050(asshowninFigure12),whilethe“additionalscenarios”reflectdemandsunderothertechnologyormarketconditions.FactorsrelatingtopotentialinvestmentreturnsandcapitalavailabilitytofinancecleanhydrogenareavailableinDOE’sreport,PathwaystoCommercialLiftoff:CleanHydrogen.Intransportation,theadditionalscenariosdepictvaryingassumptionsregardingthecostofhydrogenfuel.Forbiofuelsandpower-to-liquidfuels,therangesreflectapproachestooptimizebiofuelproductionfromdifferentfeedstocksandvariabilityindemandforpower-to-liquidfuels,assumingupto6MMTH2peryearcouldbeusedforpower-to-liquidfuelsasdescribedabove.Forindustrialapplications,thelowendoftherangeassumesthatammoniaistheonlymarketsectorthatadoptscleanhydrogen.Thehighendassumesammonia,steelmaking,andmethanolproductionadoptcleanhydrogentoadegreeconsistentwiththerangesdescribedabove,andthatcleanhydrogenisadditionallyusedforpetroleumrefiningatthesameratethatsteammethanereforming(SMR)isusedforthissectortoday(~6MMT/year,asshowninFigure6.Additionaldemandforammonia,methanol,orotherchemicalhydrogencarriersforpotentialexportofhydrogenarenotincludedinthesevalues.Figure13:Rangesinpotentialhydrogendemandin2050infivekeysectors:transportation,biofuelsandpower-to-liquidfuels,industry,blending,andenergystorageandgridbalancing.Therangeofhydrogeninnaturalgasblendingreflectsitsusetodecarbonizeindustrialheat.Thelowerboundofthesensitivityrangeassumesthat10percenthydrogenbyvolumeisusedinindustrialsectorsconsumingheatat>550°C,whiletheupperboundassumesthat50percenthydrogenbyvolumeisusedinindustrialsectorsconsumingheatat>300°C.65Inthepowersector,thefactorsaffectinghydrogenusearecomplexandinterdependent.Hydrogenisoneoptionforprovidingflexible,reliable,anddispatchablepowerthroughcombustionandco-firingaswellaslong-durationenergystorage,includingintheformofrenewablenaturalgas,ammonia,andotherfuels.Theemissionsbenefitoftheseenergycarriersvaries,however,dependingonhowthesecarriersareproduced,distributed,andutilized.Evenifhydrogenitselfisnotthestoragemediumforenergy,renewablenaturalgas,andotherchemicalstoragemedia,suchasammoniaorsyntheticfuels,wouldrequirecleanhydrogen.Electrolyzerscanalsodynamicallyrespondtofluctuationsinrenewablepower,therebyprovidinggridservicesinadditiontoenergystorage.Largebuildoutsofwind,solar,nuclear,andotherzero-emissionpowerareneededtodevelopacleangrid.Still,hydrogenandothertechnologiescanprovide22U.S.NationalCleanHydrogenStrategyandRoadmapflexibleintegrationofcleangenerationwithahighlyelectrified,resilient,andequitablepowersystem.Therangeofpotentialdemandsforhydrogenenergystorageandelectricgenerationonthegriddrawsfromseveralstudiesthatmodeledacleangridwithvaryinglevelsofelectrificationanddemandsideflexibility.66Therangeofcleanhydrogenusewilldependonvariouschallengestomarketadoption.Thesenear-termchallengesincludesecuringlong-termofftake,lackofcost-effectivemidstreaminfrastructure,andpressuretoscalethehydrogenworkforce.Forelectrolysis,therequiredspikeindomesticelectrolyzerproductionalsopresentsahurdle.ForreformationwithCCS,developmentofregionalCO2networksandstorageisamajorchallenge.Byloweringthesebarriers,includinganemphasisonaddressingenergyandenvironmentaljustice,cleanhydrogencanbedeployedsafelyandrapidlytoloweremissionsinhard-to-decarbonizesectors.IRACleanHydrogenPTCThecleanhydrogenPTC,includedintheIRA,offersarangeofcreditvaluesbasedonthecarbonintensityoftheproductionpathway,withupto$3/kgforhydrogenwithwell-to-gateemissionslessthan0.45kgCO2e/kgH2,conditionalonmeetingtheprevailingwageandapprenticeshiprequirements.Figure14:Breakeventimingforhydrogenwiththecleanhydrogenproductiontaxcreditvs.conventionalalternative(RepurposedfromDOE’sreport,PathwaystoCommercialLiftoff:CleanHydrogen3)showsexamplebreakevenpointsforbest-in-classprojects.ThePTCcanpullforwardbreakeventimesforcleanhydrogenversustraditional,fossilalternativesforcertainenduses,particularlyindustrialapplicationssuchasammoniaandsteel.1Thisanalysisshowsthatstateswithadditionalincentivessuchasalowcarbonfuelstandard(LCFS)canenablefuelcelltruckstobecompetitivebefore2025.Theseinitialestimateswillcontinuetoberefinedasagenciesreceiveindustryinputasprojectsgetunderway.Figure14:Breakeventimingforhydrogenwiththecleanhydrogenproductiontaxcreditvs.conventionalalternative(RepurposedfromDOE’sreport,PathwaystoCommercialLiftoff:CleanHydrogen3)1ThisanalysisfromtheLiftoffreportisfornewbuildDRI.Industryfeedbacksuggestsbreakevenmaybeevenearlierinsomecases.23U.S.DepartmentofEnergyChallengestoAchievingtheBenefitsofCleanHydrogenCleanhydrogentechnologycostshavealreadybeensubstantiallyreducedandmanyproductionpathwaysarecommercial.However,componentsandintegratedsystems(e.g.,PEMelectrolyzers~100MW)arestillintheearlystagesofscale-upandcommercialdeployment.Toacceleratethedomesticcleanhydrogeneconomy,someimportantchallengesremain.Theseremainingchallengesincludelackofubiquitoushydrogendistributioninfrastructure,lackofmanufacturingatscale,cost,durability,reliability,andavailabilitychallengesinthesupplybaseacrosstheentirevaluechain.67Atpresent,producersalsostruggletofindofftakerswithsufficienthydrogendemandsitedwithinanaffordabledistancetohydrogenproductionwhoarewillingtosignlong-termcontracts.Stakeholdersontheproduction,demand,andfinancingsideshighlighthesitancytocommitresourcesduetolackofpricetransparencyandrisksincleanhydrogensupply.Regulatorydriversatthestateandfederallevelcouldhelpprovidetheselong-termdemandsignals.Catalyzinglong-termofftakewouldensurethatcleanhydrogenproductionprojectsbreakgroundwhiletaxcreditsareactive,allowingforproductioncost-downsinthe2020sandearly2030s.SeeDOE’sPathwaystoCommercialLiftoff:CleanHydrogenreportforfurtherdetail.3Stakeholderinputcontinuouslyidentifiesthecostofcleanhydrogenasakeychallengeforachievingeconomicscale.AtDOE'sHydrogenShotSummitinSeptember2021,attendedbymorethan3,000stakeholdersfrom34countries,multiplechallengeswereidentifiedtothequestionposedregarding“whatispreventingwidespreadpublicacceptanceandmarketadoptionofhydrogenintheUnitedStates?”68AsshowninFigure15,costwasthemostwidelyselectedbarrier,butthelackofinfrastructureandtheneedforpublicawarenessandacceptancewerealsoidentifiedasmajorchallenges.IncentivesintheBILandIRAareexpectedtodrivemeaningfulprogressdownthecostcurvewithinthedecade.Figure15:StakeholderidentificationofpotentialbarrierspreventingwidespreadpublicacceptanceandmarketadoptionofhydrogenintheUnitedStatesinSeptember2021.ThisstakeholderinputwasgatheredpriortothepassageofIRAwhichcontainssubstantialgovernmentincentivesforcleanhydrogenproduction.Thelevelizedcostofhydrogenmustbereducedsignificantly.Forexample,basedonanalysisin2020,thecostofcleanhydrogenusingprotonexchange(orpolymerelectrolyte)membrane(PEM)electrolysiscanbeover$5/kgwhenusingrenewableelectricity.69Furthermore,thecostofelectrolysisdependsheavilyonthecostofelectricityused.Hydrogenfromlow-volumePEMelectrolysisrequiresan80percentreductionincosttoachievetheHydrogenShotgoalsandtobecompetitive.5Whileadvancedandhigh-temperatureelectrolyzersareprogressing,challengestomarketadoptionincludethecost,durability,andscaleofmanufacturingcapacity.Additionally,high-temperatureelectrolysisrequiresintegrationandoptimizationwiththermalsourcessuchasnuclearplantstoincreasetheefficienciesforhydrogenproductionandelectricitygeneration.5%5%6%6%8%11%17%19%22%Lackofgov.supportforR&DLackofsuitableendusesSafetyconcernsCompetingtechnologiesLackofincentivesforcompaniesNeedfortechnologyadvancementsPublicawareness/understandingNeedforsufficientinfrastructureCosttoenduser24U.S.NationalCleanHydrogenStrategyandRoadmapInadditiontohydrogenproductioncosts,challengesinhydrogentransport—suchaspipelines,tubetrailers,liquefaction,siting,permitting,andmaterialscompatibility—needtobeaddressed.Forinstance,operationaldatafromCaliforniashowthatthedeliveredcostofhydrogentofuelingstations,includingcompressinganddispensing,forfuelingvehiclescanbemorethan$13/kg70−morethanthreetimeshigherthanthecostrequiredtobecompetitive.71,72Additionally,permittingrequirementscanvarywidelythroughoutthecountryandcanintroducechallenges;butpermittingremainsimportantasthevehicleforimportantequities,e.g.,protectionofcommunitieswithenvironmentaljusticeconcernsandpublichealth.Streamlinedpermittingprocessesnonethelesscanfacilitatelarge-scaledeploymentsthroughoutthecountry.Industryestimatesthatmultiplemethodsofhydrogendistributionandstoragecanbecomeaffordableby2030ifstate-of-the-artdistributionandstoragetechnologiesarecommercializedatscale.Aspartofalarger$8billionRegionalCleanHydrogenHubsprogramfundedthroughtheBIL,Hubswillhelptoaddressthesechallengesbycreatingnetworksofhydrogenproducers,consumers,andsharedlocalconnectiveinfrastructure.Allfederallyfundedprojects,suchastheRegionalCleanHydrogenHubs,willalsobesubjecttoreviewinaccordancewiththeNationalEnvironmentalPolicyAct(NEPA;42U.S.C.4321,etseq.).NEPArequiresfederalagenciestointegrateenvironmentalvaluesintotheirdecision-makingprocessesbyconsideringthepotentialenvironmentalandsocietalimpactsoftheirproposedactions.TheRegionalCleanHydrogenHubsrepresentthelargestfederallyfundeddeploymentsofcleanhydrogentechnologiesintheUnitedStates.AsawardedhubsprogressthroughNEPAreview,DOEwillassimilatelessonslearnedthatcanexpeditethereviewprocessforfuturedeployments.Storinghydrogenefficientlyandsafelyisalsoaconsiderablechallenge.Althoughhydrogenhasnearlythreetimestheenergycontentperunitofmasscomparedtogasoline,73thevolumetricenergydensityofgaseoushydrogenisverylow,makingitdifficulttostore,particularlyincompactcontainersortanks.Theweightandvolumeofhydrogenstoragesystemsneedtobereduced,aswellascost,withtargetsvaryingdependingontheapplication.Whilesafetyhasbeendemonstratedinthousandsofcommercialsystemsandthroughrigoroustesting,continualeffortwillenablesafetyandapplybestpractices.Whilecompressedhydrogenistypicallystoredatambienttemperatures,reducingthetemperaturetocoldorcryogenictemperaturescansignificantlyincreasethedensityofhydrogen.Inliquidform,hydrogenisstoredatextremelylowcryogenictemperaturesinhighlyinsulateddouble-walledtanks.Suchtanksarecommerciallyavailableandusedtodayforindustrial-scalestorageandtransport.However,theneedforinsulationaswellastheboil-offandventing(releasingbuilt-uppressuretoenablesafety),presentaddedcostandchallengestosystemperformance.Material,component,andsystem-levelRDD&Dcanfurtherinnovationsthataddressthesechallenges.Additionalanalysisonusinghydrogencarriers,suchasammoniaorliquidorganichydrogencarriers(LOHCs),canrefineunderstandingofthecost,lifecycleemissions,andtoxicityofthecarriers.Figure16showsthecoststatusatlowvolumeandthemodeledcostofhydrogentechnologiesusedinthetransportationsector,assuminghighvolumemanufacturingcomparedtotheultimatecosttargetsshowningreen.Thesetargetshavebeendevelopedthroughanalysescharacterizingthetotalcostofownership(TCO)ofhydrogen-basedsystems,suchasheavy-dutyfuelcelltrucks,relativetothoseusingincumbentfuels,suchasdiesel.AdditionalTCOanalysisiscurrentlyunderwaytoinformhydrogencostandperformancetargetsforotherapplicationsacrossindustryandtransportation.Acrossapplications,costsneedtofallsignificantlycomparedtotheircurrentleveltobecomecompetitivefromasustainable,market-drivenperspective.25U.S.DepartmentofEnergyFigure16:Thestatusofproduction,deliveryanddispensing,andonboardstoragecostsrelativetothecostprojectionforhigh-volumesandtheultimatecosttargetformarketcompetitiveness.74Inadditiontothetechnologyandcostchallengesdescribedabove,fromanoverarchingenergysystemsperspective,theoptimaluseofhydrogenstillneedstobedeterminedforthemostsuitableapplicationswherelowercostormoreefficientalternativesdonotexist.Acomprehensiveassessmentoftheinterplaybetweenhydrogendemandsandelectrification,evolutionsoftheenergygrid(includinginsupplyofcleanfirmpower,gridreliability,andratesofeffectiveCCS),biofuels,andsectorsthatusehydrogenasafeedstockorfuelcanrefinetheunderstandingofthestrategicandtargetedrolecleanhydrogencanplayineconomy-widedecarbonization.Adetailedregionalapproach,informedbytheavailabilityofresourcesandend-uses,andbolsteredbythefundingavailableforRegionalCleanHydrogenHubs,willinformhowbestthehydrogenecosystemcanevolvetoenablemaximumbenefit.Allthesechallengeswillneedtobeaddressedinthemostefficient,effective,andcomprehensivemannerthroughthestrategiesoutlinedinSectionsBandC.26U.S.DepartmentofEnergyB:StrategiestoEnabletheBenefitsofCleanHydrogenThefoundationofthisroadmapisbasedonprioritizingthreekeystrategiestoensurethatcleanhydrogenisdevelopedandadoptedasaneffectivedecarbonizationtoolandformaximumbenefitsfortheUnitedStates,summarizedinFigure17.Figure17:ThenationalstrategiesforcleanhydrogenandtheDepartmentofEnergy’sHydrogenProgrammissionandcontext.First,theuseofcleanhydrogenwillbefocusedstrategicallytoprovidemaximumbenefits,particularlyinsectorsthatarehard-to-decarbonize.Ratherthancompetingwithalternativelow-costandefficientdecarbonizationtechnologies,suchaselectrification,cleanhydrogenadoptionwillfocusonend-usesthatlackalternativesandareinindustriesthatcanbuildmomentumtoenablescale,increase27U.S.NationalCleanHydrogenStrategyandRoadmapbenefits,anddrivedowncost.Second,theUnitedStatescandramaticallylowerthedeliveredcostofcleanhydrogenbydevelopingsustainableandsupply-resilientpathways,includingelectrolysis,thermalconversionwithCCS,andadvancedorhybridproductionpathways.HarnessingtheinnovationandentrepreneurialspiritofAmericansandworld-classNationalLaboratories,industry,andacademicfacilities,inadditiontorampingupdeployments,canhelpdrivedowncostsrapidlyandachievescalewithinadecade.Regionalfactorsandavailabilityofresourcessuchaswaste,water,andotherresourceswillalsobestrategicallyconsideredinthebuild-outofcleanhydrogenproduction.Third,scalecanbeachievedstrategicallybyfocusingonregionalnetworks,rampinguphydrogenproductionandend-useincloseproximitytodrivedowntransportandinfrastructurecostsandcreateholisticecosystemsthatprovidelocalbenefits.Forinstance,byleveragingtheRegionalCleanHydrogenHubsprogramasestablishedintheBIL,DOEwillfocusoncatalyzingregionalinfrastructurenetworks,bolsteringtheuptakeoflong-termhydrogenofftakers,andunlockingprivatecapital.Toimplementthesestrategies,FederalGovernmentagencieswillcoordinateanefficient“wholeofgovernment”approachtoaccelerateprogresstowardaresilient,sustainable,andequitablehydrogeneconomy.Agencieswillfocusonfoundationalenablerswhenexecutingthesestrategies,includingadvancingdiversity,equity,andinclusion;promotingenergyandenvironmentaljustice;addressingsafetyanddevelopingthenecessarycodesandstandards;creatinghigh-qualityjobsandtrainingstandards;andstimulatingprivateinvestmenttoenablemarketliftoff.28U.S.DepartmentofEnergyStrategy1:TargetStrategic,High-ImpactUsesofCleanHydrogenWhilehydrogen’sversatilityenablesittobeusedinnumerousapplications,governmentagencieswillfocusonuseofcleanhydrogenfordecarbonizingsegmentssuchasinindustryandheavy-dutytransportationthataredifficulttoelectrifyaswellasearlymarketswhereagenciessuchastheDepartmentsofDefenseandthoseprocuringstationarypowerorcommercialvehiclefleetscanprovideopportunitiesforearlyhydrogenofftake.Processesthatusefossilfuelsasachemicalfeedstockorinthegenerationofhigh-temperatureheatorlong-duration,dispatchablepowerwillrequirecleanfuels,suchashydrogen,todecarbonize.Forinstance,ammoniaandmethanolmanufacturingaccountforthemajorityofglobalGHGemissionsfromchemicals,andbothsectorsrelyonnaturalgasasafeedstock.75Theseprocessescanbedecarbonizedbyover90percentiftheyusecleanhydrogen.76,77Steelmakingaccountsforabout7percentofglobalgreenhousegasemissions,78andreliesoncokeandnaturalgastoreduceironore.Transitioningtocleanhydrogenasareductantcanreduceemissionsby40-70percent.79Overhalfofemissionsfromindustrytodayareduetothedirectcombustionoffossilfuelstoproduceheatandpowerforindustrialprocesses.80Whilelowergradesofheatgenerationaretypicallyfeasibletoelectrify,about30percentofheatusedinindustryisattemperaturesabove300°Candwouldlikelyrequirecleanfuelstodecarbonize.81Furnacesthatburnpurehydrogenorblendsofhydrogenwithnaturalgasarekeyoptionsintheseapplications.Asthepowergridisdecarbonized,long-durationenergystoragetechnologieswillbecomeessentialtoenablegrowthinusingcleanelectricityacrosssectors.Theuseofhydrogeninfuelcellsorlow-NOxturbinesisaleadingoptiontoenablemulti-daystorageand,dispatchablepowergenerationtothegrid.Inscenarioswithhighelectrificationrates,morecleanhydrogenandothercleanfuelsmaybeneededtoprovidereliable,firm,dispatchablepowergenerationwhenintegratingvariablerenewableenergyintothegrid.Co-firingwithhydrogenatexistingandnewpowerplantscanhelpcutemissionsfromthepowersector.Intransportation,hydrogenhasastrongvaluepropositioninthetruckingsector,particularlyforfleetswithheavy-dutyvehicles,long-distance(>500mile)routes,ormulti-shiftoperationsthatrequirerapidrefueling.Hydrogenisalsoanessentialfeedstockforproducingliquidfuelsthatwillbenecessaryforlarge-scaleenergyapplications,suchasaviation,rail,andmarinefuels.Inthenear-term,cleanhydrogencandisplaceconventionalhydrogeninpetroleumrefiningforconventionaltransportation.Inthemid-tolong-term,hydrogencanbeusedtoproducebiofuelsfrombiomass(toincreasetheyieldoffuelproducedfromagivenfeedstockandpathway,andtorefinethefuel’sproperties)andpower-to-liquidfuelsthatcandisplacepetroleum,particularlyinoffroadmarkets,discussedfurtherbelow.ThefollowingsectionssummarizetherolecleanhydrogencanhaveineachoftheapplicationsdescribedaboveandprovidesexamplesofwhatFederalGovernmentagenciesarefundingtoaddressthesesectors.Ongoingandfutureanalyseswillcharacterizetheroleofhydrogeninothersectorsandcontinuetoinformstrategicpriorities.CleanhydrogeninindustrialapplicationsGlobally,industryisthelargestend-usesectorintermsofenergyconsumption,accountingfor38percentoftotalenergydemand.82Approximately6percentoftotalenergydemandisusedtoproducehydrogen,whichisusedprimarilyinproducingammoniaandotherchemicals.82TheInternationalEnergyAgency(IEA)reportsthatglobalindustrialdemandforhydrogenwas51MMTin2020outof90MMTusedinallsectors.8229U.S.NationalCleanHydrogenStrategyandRoadmapHydrogeninchemicalsHydrogenisalreadyusedasanessentialfeedstockintheproductionofammoniaandmethanol.InconventionalammoniaandmethanolplantsintheUnitedStates,naturalgasreformingisusedtoproducesyngasthatisthenconvertedintoammonia(incombinationwithnitrogenfromcompressedair)ormethanolimmediatelydownstream.Productionpathwaysforbothchemicalscanbedecarbonizedbyreplacingtheuseofnaturalgasreformingwithcleanhydrogenproductionsupply,suchastheuseofCCSalongwithmitigationoffugitivemethaneemissionsortheuseofelectrolysis.Near-term,thesesectorsmaybethefirsttotransitiontocleanhydrogen,swappinghighcarbonintensityhydrogenforlowercarbonintensityproductionpathways.Insomecases,thisshiftwilloccuratexistingindustrialclusterswithcollocatedproduction/offtake,reducingrelianceonmidstreaminfrastructureasitscales.Futureuseofcleanhydrogeninthesechemicalswilldependlargelyonthemarketsforeach,anddriverstodecarbonize.Today,88percentofammoniaconsumptionintheUnitedStatesisforfertilizerproduction;theremaining12percentisusedtoproduceplastics,explosives,syntheticfibers,resins,andotherchemicals.83Futureapplicationsforammoniamayalsoincludeitsuseasafuelforoffroadvehiclesorinpowergeneration,althoughtheseconceptsarestillintheearlystagesofdevelopment.Theprimaryuseofmethanoltodayisasabuildingblockforotherchemicals,suchasformaldehyde,aceticacid,andplastics.Growthinthemethanolmarketdependsontheoverallgrowthofchemicalsproduction,ratesofplasticsrecycling,andthedevelopmentofnewend-usesofmethanol,suchasitsuseasafuelorasahydrogencarrier.ActivitiesinthissectorincludeseveralanalysesfundedbyDOEtoassessthecostandlifecycleemissionstoproducehydrogencarriers,includingmethanol,ammonia,andmethylcyclohexane.DOE’sAdvancedResearchProjectsAgency–Energy(ARPA-E)isalsofundinginnovative,game-changingapproachesforammoniaproductionandamodular,scalablesystemforhydrogentoammonia.84HydrogeninsteelmakingSteelisoneofsociety’smostimportantengineeringandconstructionmaterials.Today,itistypicallymadeusingbasicoxygenfurnaces(BOFs)orelectricarcfurnaces(EAFs),dependingonwhetheritisprimary(fromironore)orsecondary(fromrecycledscrap).FollowingtheBOFpathway,ironoreisreducedwithcokeinablastfurnaceandrefinedwithoxygen.IntheEAFpathway,electricityisusedtorefineamixtureofrecycledsteelandiron.WhiletheironoreBOFprocessismorecommonglobally,85intheUnitedStates,roughly70percentofsteelmakingusestheEAFprocessinwhichsteelisrecycled.86Usingcleanhydrogenasareductantinironorerefining,insteadofcokeornaturalgas,canreducethelifecycleemissionsformakingprimarysteelby40-70percent.87Otherapproachestodecarbonizingthissectorincludeneartermmethodssuchasimprovementstotheefficiencyofblastfurnaceaswellaslongerterminnovationsuchasdirectelectrolyticprocesses.81Thefuturemarketforgreenironore-basedsteelproductionwilldependoneconomicgrowththatcreatesnewdemandforsteelconsumption,aswellasincentivesfordecarbonizationanddomesticproductiontodisplaceimports.Inrecentyears,importshaveaccountedforabout25-30percentofU.S.steelconsumption.88TheBiden-HarrisAdministrationisadvancingcarbon-basedtradepoliciestorewardAmericanmanufacturersofcleansteel.WorkingwiththeEuropeanUnion,theAdministrationistakingstepstoalignglobaltradewithclimategoals,whichwillkeepoutdirtyproductsandresultinmorejobsandlowerpricesforAmericans.89DOEhastwoactiveprojectstojumpstarttheuseofhydrogenforsteelmanufacturingthatwillhelpoptimizedirectreductionusinghydrogenandwillenablethedevelopmentofa1tonperweekoperation,withthepotentialfor5,000tonnesperdayofsteelproduction.90,91SeveralworkshopsorganizedbyDOE’sAdvancedManufacturingOfficeandHydrogenandFuelCellTechnologiesOffice(HFTO)havehelpedidentifykeychallengesandopportunitieswhichwillbeaddressedaspartofthe30U.S.NationalCleanHydrogenStrategyandRoadmapnationalhydrogenstrategy.92,93Useofhydrogenatsteelproductionfacilitieswillrequirereliable,consistentsupplysincemostoperatethroughouttheyearwithlittledowntime.CleanhydrogenanduseofhighconcentrationsofhydrogenblendsforindustrialheatProcessheatingisthelargestdriverofenergyconsumptionwithintheU.S.manufacturingsectorandreliesprimarilyonthecombustionoffossilfuels.81,94Optionstodecarbonizethissectorincludeelectrification,particularlyatlowergradesofheat(<300°C);CCS;useoflow-carbonsourcesofheat,suchassolarthermalornuclearpower;anduseofblendsofhydrogeninnaturalgasorpurehydrogen,particularlyforapplicationsrequiringhightemperatures.Sectorsthatcurrentlyconsumeheatat>300°Cincluderefining,chemicals,cement,steelmaking,andglassmanufacturing.Duetothelowcostoffossilfuelcombustion,theheatandpowersectorshavealowerwillingnesstopayforhydrogenthanchemicalprocessesandareexpectedtoadoptcleanhydrogenatscalewhenitiswidelyavailableatlowcostorwhenstrongpolicydriversfordecarbonizationemerge.Theuseofhydrogeninthissectorwillrequiretheadvancementoflow-NOxhydrogencombustiontechnologies,aswellasanimprovedunderstandingoftheimpactsofhydrogenoninfrastructureandturbinematerials.DOE’sHyBlendinitiativewaslaunchedin2020toaddressknowledgegapsintheuseofhighconcentrationsofhydrogenblendsforindustrialheat,bringingtogetherDOENationalLabsandindustry.95HyBlendcurrentlyincludesseveralprojectswithnationallaboratoriesandover30industrypartnersfocusedonmaterialscompatibility,costandemissionsanalysisofblending,undergroundstorageofhydrogenblends,hydrogenappliances,andlow-NOxhydrogenturbines.OngoingandfutureR&DundertheHyBlendinitiativewillbecoordinatedwithrelatedeffortsworldwide(e.g.,throughdatasharing,roundrobintesting,andinformationexchange).ProjectsfundedunderHyBlendinthefuturemayaddressadditionalbarrierstousinghydrogenblendsinhigh-temperatureheat,includinganassessmentofthecostofinfrastructureconversion,streamlinedapproachestopermittingandregulatoryapproval,andR&Dtoinformstandardsassociatedwithenduses(e.g.,low-NOxturbines).Theuseofrenewablenaturalgasisanotherapproachtodecarbonizingtheheatandpowersectorandhastheadvantageofbeingfullycompatiblewithexistinginfrastructure.OneofthepioneeringprojectsfundedbyDOEinthisareademonstratedtheintegrationofanelectrolyzerwithabioreactortoproducerenewablenaturalgasfromhydrogenandcarbondioxide.96ThisnovelbioreactordesignisnowbeingcommercializedbyindustrythroughdeploymentsinCaliforniaandtheNortheast.Additionallonger-termconceptsforrenewablenaturalgasproductionincludethecatalysisofhydrogenandcarbondioxidetoproducesyntheticmethane.Decarbonizationviathisapproachwillalsorequiremanagementandmitigationoffugitivemethaneemissionsthroughoutthedeliveryinfrastructure.LifecycleanalysesofrenewablenaturalgasrelativetotheuseofhydrogenblendstodecarbonizetheheatandpowersectorsarecurrentlyunderwaywithinDOE’sHyBlendinitiative.Futurework,whichwillbedoneincollaborationacrossagenciesandstates,willenablethedevelopmentofinjectionstandardsforblendinghydrogenintonaturalgaspipelinesusedinhigh-temperatureheatapplications—includingtheupperblendlimitsforhydrogen.Otherworkincludesassessingopportunitiestorepurposenaturalgasinfrastructureforhydrogen,identifyingconditionsunderwhichdeploymentofnewinfrastructurewouldbenecessarytoenabletheuseofhighconcentrationsofblendsandadvancingtheuseofcleanhydrogenincombinedheatandpowerapplications.PrioritiesforHyBlendincludereducingtheriskforallcommunities–especiallyvulnerableanddisadvantagedcommunities–andspearheadingpolicies,suchas“digonce”strategies,astheNationinstallstransmission,CCS,CO2pipelinesandotherinfrastructure.Additionalworkisalsoneededtoestablishormodifystandardsforbothdistributionandenduseofblends.Thesestandardswillinformaspectsofdesign,safety,andemissions.31U.S.NationalCleanHydrogenStrategyandRoadmapCleanhydrogenintransportationIn2019,thetransportationsectoraccountedfor33percentofgreenhousegasemissionsintheUnitedStatesand51percentoftransportationemissionsisduetolight-dutyvehicles.97Whileindustryhasfocusedprimarilyonbatteryelectrificationforlight-dutyvehicles,hydrogenandfuelcellsoffersignificantopportunitiesforapplicationsrequiringlongdrivingranges,fastfueling,andlargeorheavypayloads.98InJanuary2023,DOE,DepartmentofTransportation(DOT),EPA,andDepartmentofHousingandUrbanDevelopmentjointlyreleasedtheU.S.NationalBlueprintforTransportationDecarbonization,whichidentifiedastrategicroleofcleanhydrogeninfreightapplications.99PreviousDOEanalysishasidentifiedmarketsegmentsofthetruckingsectorwherehydrogenhasastrongervalueproposition,andongoingworkisascertainingtheroleforhydrogeninoffroadvehicles,suchasminingequipment,ferries,andrail.Thisanalysiswillhelpinformfutureresearchactivitiesinthisspace.Hydrogenformediumandheavy-dutytrucksandbusesandreplacementfuelproductionMedium-andheavy-duty(MDHD)vehiclesareusedacrossthecountryfornumerousapplicationsfromproductdeliverytovehicletowingtowastecollection,andaccountforabout20percentofemissionsfromthetransportationsector.97DOEandotherFederalagenciesareworkingwithindustryandnationallaboratoriesthroughthe21stCenturyTruckPartnership(21CTP)toreduceemissionsfromtrucksandbusesthroughsafeandcost-effectiveapproaches.100Membersof21CTPmeetregularlytoshareinformationthatcaninformpre-competitiveR&Dactivities.Batteriesandfuelcellsarebothfocusareasof21CTPandcaneachplaycomplementaryrolesindecarbonizingthetruckingsector.Fuelcellsareparticularlyviableforapplicationssuchasheavy-dutytrucksthatrequirefastfilltimescomparabletodieseltoday,orlongdrivingrangesabove500miles.101DOTandDOElaunchedaJointOfficein2021whichincludesactivitiesrelevanttoinfrastructureforhydrogenvehicles.Inaddition,DOElaunchedtheMillionMileFuelCellTruckConsortium(M2FCT)in2020toenablethefuelcelldurability,cost,andperformancerequiredforthelong-haulheavy-dutytruckmarket.102HydrogenandfuelcelltruckprojectsarealsoincludedunderDOE’sSuperTruckprogramtodemonstratemedium-andheavy-dutyhydrogenfuelcelltrucksunderreal-worldoperatingconditionswithinthenextfiveyears.103Otherprojectssupportingthisstrategyincludedevelopingtherequiredinfrastructure,fuelingcomponents,hydrogenstorageanddispensingtechnologies,andaprojectthatwilldemonstrate15parceldeliverytrucksoperatingindisadvantagedcommunities.104,105Transitagencieswithlargebusfleetsorcoachbuseswithlongdrivingrangescanalsobenefitbyusinghydrogenandfuelcells.TheFederalTransitAdministrationinpartnershipwithDOEhasbeenevaluatingfuelcellbusesandcontinuestocollectreal-worlddeploymentdatatoguidefutureadvances.106Byfocusingthestrategyonfleets,freight,andcorridorswhereclustersofdedicatedinfrastructurecanbedeveloped,theUnitedStateswillreducetheriskofstrandedassetsandensuretheutilizationofthedevelopinghydrogenfuelinginfrastructure.Thelargestconsumerofhydrogentodayistherefineryindustry.Itisusedforreductionofsulfurcontentaswellasforcrackingofcrudeintolighterpetroleumfractions.Decarbonizinghydrogensupplyforrefineriesprovidesaneartermcleanhydrogendemandabletoreducetransportationemissionsfromtheproductionofpetroleum-basedfuelsusedinconventionalvehicles.Inthelongerterm,refinerytechnologies,workforce,andassetscanprovidehydrogendemandtoproducebio-derivedfuelssuchasbiodiesel,methanol,andethanol.Suchfuelscanhelpthedecarbonizationofconventionalfuelvehiclesandreducetheextentofstrandedassets.HydrogenformaritimeapplicationsandportsInadditiontovehicles,opportunitiesforhydrogenandhydrogencarriersarealsoemerginginthemaritimeindustry,rangingfrominlandandharborvesselstorecreationalandpier-sideapplications.NewemissionsregulationsbytheInternationalMaritimeOrganization(IMO)limitthesulfurcontent32U.S.NationalCleanHydrogenStrategyandRoadmapinfueloilusedonships(or“bunkerfuel”)from3.5percentto0.5percent,startingin2020.107Theselimitsarefurtherreducedto0.1percentforshipsoperatinginEmissionsControlAreas,includingcertaincoastalregionsoftheUnitedStatesandtheEuropeanUnion.108Givenincreasinglystringentrequirements,hydrogenandhydrogencarriers,suchasammoniaandmethanol,mayofferanattractivealternativetobunkerfuel.Furthermore,theuseofhydrogeninvariousmarinevesselsandatportsfordrayagetrucks,shorepower(electricityforshipswhiledocked),andcargoequipmentallofferthepotentialtoreducecarbondioxideandotheremissionsandtodevelopinfrastructureintargetedregionstoscaleupuse.109In2019,DOEheldanH2@PortsworkshopincollaborationwiththeU.S.DepartmentofTransportationMaritimeAdministration(U.S.DOT-MARAD)andtheEuropeanCommissionFuelCellsandHydrogenJointUndertakingtoidentifyopportunitiesandchallengestotheuseofhydrogenatports.110TheMaritimeAdministration(MARAD)incollaborationwithDOE,hasbeendevelopinganddemonstratinghydrogenandfuelcelltechnologiesformaritimeapplicationsoverthepastdecade,includingtheworld’sfirstpier-sidehydrogenfuelcellforauxiliarypowerinlieuofdieselgenerators.111Incollaborationwithstateagenciesandindustry,theUnitedStatesisdeployingthefirsthydrogenfuelcellpassengerferryintheWesternhemisphere.112DOElaunchedanewprojecttodemonstrateaMW-scaleelectrolyzeronafloatingbargetofuelapassengerferry,inadditiontousingafuelcelltochargeabatteryelectricvessel.113Suchfirst-of-a-kinddemonstrationsareintegraltoStrategyOne–“TargetStrategic,High-ImpactUsesofHydrogen”–tode-risktechnologiesforadditionalprivatesectorinvestmentandmarketadoption.Otheractivitiesincludeaddressingsafetyanddevelopingtherelevantcodes,standards,andensuringglobalharmonization,inconjunctionwithotherorganizations,includingIMO,MARAD,andinternationalcollaborators.HydrogenforaviationandsustainableaviationfuelproductionPriortotheCOVID-19pandemic,aviationaccountedforabout11percentofUnitedStatestransportationemissions;withoutincreasedaction,itssharewillcontinuetogrowasmorepeopleandgoodsaretransportedbyair.114ThedeploymentofSAFs,suchasbiofuelsandpower-to-liquidfuelsthatcanbeusedinsteadofconventionaljetfuel,isessentialtodecarbonizingthissector.115In2021,DOE,DOT,andUSDAlaunchedagovernment-wideSAFGrandChallengetoreducethecost,enhancethesustainability,andexpandtheproductionanduseofSAFsthatachievea50percentreductioninlifecycleGHGsorgreater,comparedtoconventionalfuel.116TheGrandChallengefurthersetgoalstosupply3billiongallonsofSAFsperyearby2030and35billiongallonsby2050tomeet100percentofaviationfueldemandby2050.116Thesenationalgoalsformthebasisforhydrogendemandinthissector.Manydifferentbiofuelandpower-to-liquidfuelpathwaysarebeingexploredtomeettheSAFGrandChallengegoal.Thepathwaysthathavebeenapprovedtodateforusebyaviationrequirehydrogenasafeedstock117andcouldadditionallyco-producesustainablefuelsforuseelsewhereinthetransportsector.TheNetZeroTechteam,acollaborationbetweenDOEandindustrythroughtheU.S.DrivingResearchandInnovationforVehicleefficiencyandEnergysustainability(U.S.DRIVE)partnership,isconductingcostandemissionsanalysisoffuturepathways,toidentifyfuelswiththegreatestpotential.Inaddition,directuseofhydrogenisbeingdemonstratedforaircraftinspecificmarketsegmentssuchasshort-durationflightsanduncrewedaerialvehicles(UAVs).Whilehydrogenstoragedensityisachallenge,hydrogenfuelcellsofferthebenefitofbothzerocarbonandzerocriteriapollutantemissionsfromtheexhaust.DODisdemonstratingdirecthydrogenfuelcellsforUAVs.118Therearealsoseveralindustryprojectsonhydrogenfuelcellsandenginesforaircraft.Forexample,ZeroAviaandOttohaveannouncedapartnershiptodevelopa19-seataircraftthatcantravel1,00033U.S.NationalCleanHydrogenStrategyandRoadmapnauticalmiles,potentiallytargetingnichemarketneedsinprivateflights.119Airbusannouncedthreedesignconceptsfordirecthydrogenuse,includingfuelcellandhydrogencombustionsystems.120TheU.S.FederalAviationAdministration(FAA),U.S.AirForce(USAF),andDOEconvenedindustrystakeholdersattheH2@AirportsworkshopinNovember2020,whichidentifiedkeychallengesandpotentialopportunitiestoaddressthem.121HydrogeninrailTherailsystemintheUnitedStatesspansover140,000route-miles,deliverscriticalgoods,movespassengersacrossthecountry,andsupportsover167,000jobs.122Althoughrailaccountsforonlyabout2percentoftransportation-sectoremissions,123thismodeishardtodecarbonizeduetoconventionallow-costlegacysystemsandthelowdieselcosts.However,liquidfuels(includingbiofuels),aswellasbatteriesandhydrogen,canallplaycomplementaryrolesincompletelydecarbonizingthissector.Thecostcompetitivenessofeachpowertrainwillvarybyregionandbyeachsystem’sdemandprofile.SeveralearlydemonstrationsofhydrogenandfuelcellshavealreadybeencommissionedinbothpassengerandfreightrailaroundtheworldandwillinformfutureRDD&D.Hydrogen-poweredtrainshavebeeninserviceinGermanysince2018andhavecompletedtrialsinAustria,theNetherlands,Sweden,andFrance.124IntheU.S.,California’sSanBernardinoTransportationsystemisdevelopingahydrogenfuelcellpassengertrainexpectedtobeinserviceinearly2024.125DOEincollaborationwiththeDOT’sFederalRailroadAdministration(FRA)heldanH2@Railworkshopin2019toidentifyopportunitiesforhydrogenandfuelcellsforrailapplications.126OngoinganalysiseffortswillinformperformanceandcosttargetsforspecificlocomotivemarketsegmentsinthissectorandprogresstowardtargetswillbemonitoredandvalidatedbyDOEandFRA.127,128PowersectorapplicationsHydrogencanofferversatilityasamediumforlong-durationenergystorage,electricpowergeneration,andgridservicesandcanofferadditionalrevenuestreamsbyprovidinghydrogenasafeedstockorfuelforothersectors.HydrogenforbackuppowerandstationarypowerBackuppowerandstationarypowerfromfuelcellscanreplacedieselgeneratorstoprovideresiliencetocriticalfacilitiesthatrequire24/7power,suchashospitalsanddatacenters.Systemsthatneedsteady,reliablepowerinremotelocations,suchasmicrogridsandtelecomtowers,arealsopromisingopportunities.Althoughbackuppowerutilizationislow,movingfromdieseltocleanhydrogencanstillprovideameaningfulsteponthepathtonetzero.Fuelcellsoperatingonhydrogenhavezeroemissionsandarequieterandmorereliablethandieselgeneratorsandofferbenefitsforhealthandairquality—particularlyfordisadvantagedcommunitieswhoareofteninnon-attainmentzones.ExamplesofFederalagency-fundedprojectswithstateandprivatesectorfundssupportingthissectorincludetheworld’sfirsttrigenerationsystematawastewatertreatmentplanttoco-producepower,heat,andhydrogenthroughahigh-temperaturefuelcell;129firstofakinddemonstrationofhydrogenfuelcellsfordatacenterapplications;projectstolowerfuelcellcostandimprovedurability;130reversiblefuelcellRDD&D;131andhundredsoffuelcelldeploymentsforbackuppowerapplications.132EnergyStorageandElectricityGenerationEnergystorageonthegridcanhaveseveraldifferentroles,includingtimeshifting,firmcapacitygeneration,avoidingtransmissionlinebuildout,andancillaryservices.133Today,gridenergystorageisdominatedbypumpedhydropowerdeploymentscapableofdischargingpowerfor12hoursorless.134Lithium-ionbatteriesarethefastestgrowingmodeofenergystorage,commonlyforshorterdurationsof4hoursorless.13234U.S.NationalCleanHydrogenStrategyandRoadmapFigure18:Hydrogenenergystoragesystemsinvolvetheuseofelectrolyzerstoproducehydrogenfromexcesspoweronthegrid,bulkstorage,followedbypowergenerationusingfuelcellsorturbines.Asthegridtransformsto100percentcleanpower,longer-durationenergystoragetechnologiesthatcandischargeformultipledaysatatimewillbeneeded.AsshowninFigure18,hydrogenenergystoragesystemsatscalecouldinvolvetheuseofelectrolyzerstoproducehydrogenusingexcesspoweronthegrid,storageofthehydrogeninbulk(e.g.,underground),andthenusehydrogentogeneratepowerattimesofhighdemand.133Inthenear-tomid-term,co-firingofhydrogeninnaturalgasturbinesforpowergenerationcouldfacilitateatransitionto100percenthydrogen-firedturbinesthatwillbeneededtofullydecarbonizetheelectricitysystem.Severalindustrystakeholders,suchasNextEra,FloridaPower&Light,andIntermountainPowerhaverecentlyannouncedplanstoco-firehydrogenwithnaturalgasinhundredsofmegawattsofturbines,includingdispatchableco-firingapplications.135Optimizedco-sitingofrenewables,nuclearplants,high-temperatureheatsources,andthestorageinfrastructureforhydrogenandcarbondioxidecanhelpreduceenvironmental,economic,andcommunityimpactcomparedtocompletelyindependentbuild-outofsuchsystems.Large-scaledeploymentsofhydrogenenergystoragewillrequirereductionsinthecostofelectrolyzersandfuelcells,thedevelopmentoflow-NOxcombustiontechnologiesforuseinhydrogenturbines,andthedevelopmentofnewlow-costbulkhydrogenstoragetechnologiesthatarenotgeographicallyconstrained.Tosupportthissector,DOEhasestablisheduniquenationallaboratorytestfacilitiestodemonstrateandtesttheperformanceofelectrolyzersintegratedwithvariouspowerandthermalsources.136Thesefacilitiesallowindustrytode-risksystemsintegrationandvalidatenewtechnologiesbeforedeployment.DOEisalsofundingRDD&Donlow-NOxturbinesandhasfundednumerousanalysisprojectsandtoolstoquantifytheeconomicbenefitsofhydrogenenergystorageunderspecificgridconditionsincollaborationwithindustry.137RD&DeffortsonNOxmitigationandmaterialscompatibilitymayalsoinformretrofittingofexistingnaturalgasturbinesandnaturalgaspipelinecompressorstationstooperateonblends.TheUnitedStatescurrentlyhasgigawattsofcombustionturbinesinoperationthatmaybecapableofoperatingonblendswithmodificationstokeycomponents,suchasthefuelsupplysystemandburners.Additionally,DOEhasfundedfiveprojectstodatedemonstratingtheintegrationofelectrolyzerswithnuclearpowerplantstocreateanotherrevenuestreamforthesecleanfirmgeneratorsthatalsosupportgridstability.138,139EngagementthroughtheNuclearRegulatoryCommissionisunderwaytoaddresschallengesincludingsitingandpermitting.In2022,DOE’sLoanProgramsOffice(LPO)closedonanapproximately$500millionloanguaranteetotheAdvancedCleanEnergyStorageProject,whichwouldbeafirst-of-its-kindcleanhydrogenproductionandstoragefacilitycapableofprovidinglong-termseasonalenergystorage.140ThefacilityinDelta,Utahwillcombinea220MWalkalineelectrolyzerwithsaltcavernstorageforgrid-scaleenergyconversionandstorageusinghydrogenastheenergycarrier.AdvancedCleanEnergyStorageisexpectedtobenefitUtahbycreatingupto400constructionand25operationsjobsandcouldhelpcatalyzelong-termjobopportunitiesandtransitionthestatetoanew,cleanenergyeconomyforthefuture.SeveraldisadvantagedcommunitiessurroundDelta,Utah,andcouldbenefitfromtheproject.35U.S.NationalCleanHydrogenStrategyandRoadmapHydrogenApplicationsAcrossAgenciesInadditiontocommercialmarketssuchasindustrialandchemicalmanufacturing,governmentagenciescancatalyzeprivatesectoruptakethroughearlydemonstrationsandbundleddemandforsubsequentofftake.Forexample,hydrogenisuniquelycapableofprovidingforbothenergyandwaterresiliencyneedstofederalfacilitiesduringemergencysituations.DemonstrationsatmilitarybasesandothercriticalloadsforbackuppowerandmicrogridscanusehydrogenfuelcellsrangingfromkWtoMWandcreatehydrogendemand.ByunlockingthepurchasingpoweroftheU.S.Government,wecancatalyzemarketliftoffleveragingthemorethan150,000mediumandheavydutyvehicles141and8,600buildings142acrossthegovernment.DODhashistoricallybeenanearlyadopterintechnologyspacesincludingGPStechnologyenabledbyDODandnowubiquitous.DOEandDODworkedtogetheroveradecadeagotodemonstratefirstofitskindfuelcellmaterialhandlersinDefenseLogisticsAgencywarehouses,andtodayhydrogenfuelcellmaterialhandlinghasgrownintoavibrantmarket,withover60,000hydrogenforkliftsinoperationprimarilyintheprivatesector.OthernascentapplicationssuchasUAVs,UUVs,andoff-griddispatchablepowercanbedemonstratedbyDODandotherUSGagenciestofurthermaturethetechnology.Thelearningsfromtheseactivitiesandimprovementsinperformanceandefficiencycaninformadditionaltechnologydevelopmentstohelpde-riskfuturedualusecommercialinvestment.Cleandispatchablepower,suchasmobilefuelcellchargers,isparticularlyimportantforfieldingelectricvehiclesinareaswithoutgridaccess.Off-gridcleandispatchablepowercouldalsotoappliedtogridchallengedareasintheneartermandduringdisasterrelief.CarbonIntensityofHydrogenProductionHydrogenproductionpathwaysvaryincarbonintensity,dependingontheirenergysource,efficiency,anddesign,asshowninFigure18.Infossilpathways,forinstance,theamountofCCS,theenergyefficiencyofthesystems,andtheamountoffugitiveemissions,alldeterminethecarbonfootprintofhydrogenproduction.Inelectrolysis,thecarbonintensityofelectricity,whetheritisfromdedicatedrenewables,nuclear,orbulkgridelectricity,istheprimaryvariablethatinfluenceslifecycleemissions.AsdirectedintheBIL,DOEisrequired,inconsultationwiththeEnvironmentalProtectionAgency(EPA),todevelopaninitialstandardforthecarbonintensityofcleanhydrogenasapointofreferenceforselectprogramsundertheBIL.Thestandardwasreleasedasadrafttoobtaininputfromindustryandotherstakeholdersandfinalizedin2023.19TheBILrequiresDOEtosetacleanhydrogenproductionstandardthat:•Supportscleanhydrogenproductionfromspecifiedlowcarbonenergysources(e.g.,includingbutnotlimitedtofossilfuelswithCCS;hydrogen-carrierfuels(includingethanolandmethanol);renewableenergyresources,includingbiomass;nuclearenergy);•Definestheterm“cleanhydrogen”tomeanhydrogenproducedwithacarbonintensityequaltoorlessthan2kilogramsofcarbondioxide-equivalentproducedatthesiteofproductionperkilogramofhydrogenproduced;and•Considers“technologicalandeconomicfeasibility.”Theinitialstandardwassetat4kilogramsofcarbondioxide-equivalentperkilogramofhydrogen(kgCO2e/kgH2)onawell-to-gatelifecyclebasis,consistentwiththevastmajorityofresponsesfromstakeholderswhocommentedonthedraftCleanHydrogenProductionStandard.143DOEisalsorequiredtoupdatethestandardwithinfiveyearsofsettingtheinitialstandard.144AnimportantcomponentoffuturecleanhydrogendemonstrationsordeploymentssupportingtheBIL36U.S.NationalCleanHydrogenStrategyandRoadmapwillbestakeholderengagementandanalysestodetermineactuallifecycleemissionsalongtheentirevaluechain.Government-fundedpublictoolsareavailable,suchasDOE’sGreenhouseGases,RegulatedEmissions,andEnergyUseinTransportation(GREET)model,145areusedtocharacterizethedecarbonizationpotentialofdeploymentsconsistently,includingwell-to-gateemissionsofhydrogenproduction,aswellasemissionsofhydrogendistributionandend-use.Forexample,well-to-gateemissionsofSMRwithCCScanhavearangeofcarbonintensitiesdependingonthedegreeoffugitiveemissions,capturerate,andcarbonintensityoftheelectricitygrid.Well-to-gateemissionsofelectrolysisarenearzerowhentheelectricitysupplyis100percentcarbonpollution-free–asistheAdministration’sgoalby2035–butcanbemorethandoublethoseofSMRwhenusingthecurrentaverageU.S.gridmix.146,147Asglobaltradedevelopsforhydrogen,consistentinternationalmethodsforlifecycleanalysiswillalsoberequired.Thiswasoneofthehighestpriorityactionsvotedonbyover20countriesundertheInternationalPartnershipforHydrogenandFuelCellsintheEconomy(IPHE),aglobalgovernmentpartnershiplaunchedin2003toaccelerateprogressinhydrogenandfuelcelltechnologies.148TheU.S.iscurrentlyaViceChairofIPHE,aftercompletingatermasChair,andisalsoaleadmemberoftheIPHEHydrogenProductionAnalysis(H2PA),149ataskforceunderIPHEdevelopingmutuallyagreed-uponmethodsoflifecycleanalysisforhydrogenproduction.Analysisguidancedevelopedtodatehasfocusedonspecifichydrogenproductionpathwaysofinterestacrossover20countriesinthenearterm.Ongoingworkisexpandingthisguidancetoincludeadditionalpathwaysandtoaccountfortheemissionsassociatedwithhydrogendistribution.WhileguidancedevelopedbyIPHEisnotbinding,itcaninformaccountingframeworksimplementedbymembercountriestoensureconsistency.Assuch,theU.S.willengageinglobalcollaborationandcoordinationtoaccelerateprogressandfostertransparencyandrigorintheanalysesofemissionsacrossthevaluechainofhydrogen,includingpotentialindirectimpacts,frommultiplepathways.DOEisalsocurrentlyfundingR&Dandanalysistoaddresskeyuncertaintiesinestimatesofthedecarbonizationpotentialofhydrogen.Arangeofestimatesofthewell-to-gateemissionsofseveralhydrogenproductiontechnologiesisprovidedinFigure18below.DOErecentlyreleasedseveralsolicitationstoimprovetheperformanceofsensingtechnologiesthatcanmeasurehydrogenlossesandiscollaboratingwiththeNationalOceanicandAtmosphericAdministrationtocharacterizetheglobalhydrogencycle(includinginteractionsofhydrogenwiththeclimateandwithsoil).UponcompletionofR&Dthatascertainslossratesandclimateimpactswithhigherfidelity,DOEwillincorporatebothintolifecycleanalysesandtheGREETtool.DOEisadditionallyfundingRD&Dtoimprovedetection,quantification,andmitigationoffugitivemethaneemissions,whichareknowntovaryconsiderablybyregionandcansubstantiallyimpactthelife-cycleemissionsofhydrogenproductionfromtheoilandnaturalgassupplychain.Itisimportanttonotethatthelandscapeformethaneemissionsmonitoringandmitigationischangingrapidly.Forexample,theEPAisintheprocessofdevelopingenhanceddatareportingrequirementsforpetroleumandnaturalgassystemsunderitsGreenhouseGasReportingProgramandisintheprocessoffinalizingrequirementsunderNewSourcePerformanceStandardsandEmissionGuidelinesfortheoilandgassectorthatwillresultinmitigationofmethaneemissions.Withthesechanges,itisexpectedthatthequalityofdatatoverifymethaneemissionswillimproveandmethaneemissionsrateswillchangeovertime.Inaddition,PHMSAhasproposedrequirementsforhydrogenpipelineleakdetectionandrepairaspartofitsLeakDetectionandRepairRule,whichstatesthatunlessotherwisespecifiedintheproposedamendments,theproposalsinthenoticeofproposedrulemakingapplythesamerequirementstohydrogengaspipelines(andothergaspipelines)astonaturalgaspipelines.Suchactionscanstimulatethedevelopmentanddeploymentofadvancedleakdetectiontechnologies,andbolstermethaneandhydrogenleakreportingandrepair.15037U.S.DepartmentofEnergyFigure18:Well-to-gatecarbonintensityofhydrogenfromSMRwithCCSandelectrolysispathwaysrelativetocurrentU.S.production,andemissionsintensitiesthatcanaccessthecleanhydrogenproductiontaxcredit.(ReproducedfromPathwaystoCommercialLiftoff:CleanHydrogen.3AssumptionsregardingmodeledtechnologiesaredescribedfurtherinLiftoffreportandincludemodeledassumptions;real-worldlifecycleemissionsmayvarybeyondtherangesshownhere.)38U.S.DepartmentofEnergyStrategy2:ReducetheCostofCleanHydrogenWhiletherearevariouschallengesacrosstheentirehydrogenvaluechainfromproductionthroughend-use,Strategy2prioritizesreducingthecostofcleanhydrogen.Therearemanywaystoproducehydrogenatvarioustechnologyreadinesslevelsandawiderangeofassociatedcarbonemissionsandotherenvironmentalimpacts.Agencieswillprioritizeandaccelerateitsactionstofocusonthemostcriticalbarriersforcostreduction;fosterpartnershipsacrossindustry,academia,andnationallaboratories;continuouslytrackandadjustitsportfoliobasedonperformance-drivenmetrics;andcatalyzetechnologyinnovationanddeploymentatscale.InresponsetoPresidentBiden’sApril2021ClimateSummitrequesttoDOEtoaccelerateprogresstowardstacklingtheclimatecrisis,DOEestablishedtheEnergyEarthshotinitiative,creatingbold,ambitiousgoalstogalvanizethedomesticandglobalindustry.151HydrogenShotisoneofDOE’sflagshipinitiativestodrivedownthecostofcleanhydrogen,inconcertwithacceleratingdeploymentandscale,suchasthroughRegionalCleanHydrogenHubs,loanguarantees,andothermechanisms.AsshowninFigure19,theHydrogenShotcanenableawiderangeofusecasesandimpactsandbuildsonthecurrentprogressacrossthespectrumofproductionpathways.39U.S.DepartmentofEnergyFigure19:TheHydrogenShottargetsbuildonprogressforavarietyofpathways,enablingarangeofusecasesandimpacts.ContinuingtoadvanceRDD&Defforts,andreducingcostsandassociatedlifecycleemissions,remainimportantforallhydrogenproductionpathways.Amixofhydrogenproductionfromwaterelectrolysis,hydrogenproductionfromfossilfuelswithcarboncaptureandstorage,andhydrogenproductionfrombiomassandwastefeedstockswilllikelybeusedintheUnitedStatesthroughatleast2050.Today,thermalconversionpathwaysarethedominantapproachtohydrogensupplyworldwide,andtypicallyhavealowcostbuthighemissions.Electrolyzersusingcleanenergyandadvancedpathways(i.e.,technologiesatlabscale,suchasphotoelectrochemicalandthermochemicalwatersplitting)canachievenearzeroemissionsbutarecurrentlymuchhigherincost.HydrogenProductionThroughWaterSplittingElectrolysisuseselectricityandanelectrolyteormembranetosplitwaterintohydrogenandoxygen.Mostelectrolysisusesoneofthreetechnologies:alkaline,PEM,andsolidoxideelectrolyzercells(SOECs).Thealkalineprocessisthemostestablished,havingbeenusedforoveracentury.PEMelectrolyzerscanoperateeffectivelyatarangeofloadswithsub-secondresponsetimes,whichmakesthemparticularlycompatiblewithvariableenergysources,suchassunandwindpower.SOECsuseaceramicelectrolyteathightemperaturesandaretheleastcommercializedofthethreetechnologies.WithhigherelectricalefficiencythanPEMandalkalinesystems,SOECsarelikelytobemorecost-effectiveinscenarioswherehigh-temperatureheatisavailable,suchasfromnuclearpowerplantsandconcentratedsolarpower.40U.S.NationalCleanHydrogenStrategyandRoadmapThecostofcleanelectricityaccountsforoverhalfofthecostofhydrogenproductionfromelectrolysis.152,153RDD&DcanalldrivecoststowardtheHydrogenShottargetbyloweringthecostofcleanelectricity(renewables,nuclearpower),boostingtheefficiencyofelectrolysis,reducingelectrolyzerandbalance-of-plantcapitalcostsandenablingdynamicintegrationofelectrolyzerswiththegridandwithrenewableandnucleargeneratorstoaccesslow-costvariablepower.Thelong-termextensionsincludedinIRAoftheproductiontaxcreditandinvestmenttaxcreditforcleanelectricitytechnologieswillalsoservetodrivedowncleanelectricitycosts.Figure20showsonescenarioforreducingthecostofcleanhydrogenfromelectrolysis,whichrequiresdramaticallyloweringcapitalcosts,loweringenergycosts,increasingefficiencies,andimprovingdurabilityandreliabilitytoreducemaintenancecosts.Figure20doesnotincludetheimpactsofincentivesenabledbyIRA.Figure20:Achieving$1/kgusingelectrolyzersrequireslowerelectricitycost,significantlylowercapitalcosts,improvementinefficiencyanddurability,andhigherutilization.Costsdepictedtonotincludeimpactsofincentives,suchastheIRA45VCredit.forProductionofCleanHydrogen.The2020baselinecostof$5/kgisthelevelizedcostofhydrogencalculatedusingDOE’sH2Amodelusingaconservative$1,500/kWforPEMelectrolyzercapitalcost(atlowvolumemanufacturing),a$50/MWhelectricityprice,andacapacityorutilizationfactorof90percent.154Incomparison,usingtoday’s$29/MWhforsolarand35percentcapacityfactor,basedonthe2020NationalRenewableEnergyLaboratory(NREL)AnnualTechnologyBaseline,resultsinalevelizedhydrogencostofabout$7.50/kg,asshownbythegreenarrow.Asshown,thelevelizedcostofhydrogenproductionishighlysensitivetothecostofelectricity.Accesstolow-costenergywithahigh-capacityfactor(e.g.,throughintegrationwithexistingcleanbaseloadassetssuchashydroelectricandnuclearpowerplants)canfacilitatemuchlowerlevelizedcosts.Inaddition,throughtheendofthedecade,declinesinelectrolyzercapexwillaccountforasignificantportionofcostreductionsonthelevelizedcostofcleanhydrogen.ItisimportanttonotethatthecostestimatesinTheexampleshownofwhatwouldbeneededtoachieve$2/kg–requiredbytheBILby2026–isbasedon$30/MWhenergycostsand$300/kWcapitalcosts,andthe$1/kgHydrogenShotgoalwouldrequire$20/MWhand$150/kW,respectively.Thesecosttargetsdonotincludethecleanhydrogenproductiontaxcredit.Inallthesecases,a90percentelectrolyzercapacityfactorisassumed,requiringtheuseofcleanfirmelectricity,suchasnuclearorgeothermalenergy,orforvariablerenewablestobecomplementedbystorage.Thisscenarioillustratesthatcapitalcostswouldneedtobereducedby80percentandtheoperatingandmaintenancecostswouldneedtobereducedby90percent.Itshouldbeemphasizedthatthesearejustscenariosthatcouldachievethesecosttargets.Still,othercombinationsofcost,efficiency,electricityprices,utilizationfactors,anddurability,includingtheuseofthermalsourcesforhigh-temperatureelectrolyzers,couldenablemeetingtheHydrogenShotgoal.In2020,DOElaunchedanewconsortiumbringingtogethernationallabs,industry,andacademia-H2NEW(HydrogenfromNext-generationElectrolyzersof41U.S.NationalCleanHydrogenStrategyandRoadmapWater)–onelectrolyzertechnologiestocomplementHydroGEN,aconsortiumthatinvestigatesallwatersplittingtechnologies,includingdirectphotoelectrochemicalandthermochemicalmethods.155H2NEWwillaccelerateprogressinelectrolyzertechnologiesandhelpreducecosts.AsshowninFigure21,thesecostreductionswillrequirehigh-volumemanufacturing,innovationsinelectrolyzerstacksandbalanceofplant(BOP)components,andelectrolyzerintegrationinnext-generationsystems.Improvingelectrolyzerefficiencycanalsohelpreducethelevelizedcostofhydrogensincethecostofelectricityisalargefractionofhydrogencost.Whileanalysesonvarioussystemconfigurationsareongoing,thefigureshowsjustoneexampleofthemagnitudeofcostreductionsineachcategory.Thesevalueswillbeupdatedastheindustryadvances.Policiessuchasthe45VCreditforProductionofCleanHydrogenwithintheInflationReductionActwillalsodrivedowncapitalcostsoverthecomingdecade.Figure21:Reducingelectrolyzercapitalcostswillrequirereachingeconomiesofscaleandinnovatingtheelectrolyzerstackandbalance-of-plantcomponents.Thereisnosingleoverarchingcostdriverforcapitalcostreduction.AsshowninFigure22,multiplecomponentsencompassingelectrolysisstacksandbalance-of-plantsystemsmustbeaddressed.156Asdemandrisesforenergystorageandcleanpower,stakeholdersmustcontinueexploringinnovativemechanismsofon-gridandoff-gridintegrationofelectrolyzerstoenableaccesstovariablecleanenergyatlowcost.Innovativesystemdesignsmayalsoimproveelectrolyzereconomics,suchasbymonetizingco-generatedoxygenoraccessingwasteheat.Figure22:Therearemanydriversforelectrolyzerstackandbalance-of-plantcapitalcostreductions.HydrogenProductionfromFossilFuelswithCarbonCaptureandStorageTheBILrequiresDOEtoaccountforandsupportopportunitiesforhydrogenproductionfromdiverseenergy,includingfossilfuelswithCCS.OpportunitiesincluderegionsoftheU.S.withabundantnaturalgas,reservoirsforCO2storage,orexistingnaturalgassupplyinfrastructure.AsshowninFigure23below,thecurrentnetworkofnaturalgasinfrastructureandSMRplantsarebothlargelyconcentratedintheGulfCoastregion,giventheavailabilityofnaturalgasandhydrogendemandforthepetrochemicalsector.Hydrogeniscurrentlyanessentialfeedstockwithinrefining,usedprimarilytocrackheavycrudeoilanddesulfurizeproductstreams.Displacinghydrogenusedatcurrentpetroleumrefinerieswithcleanhydrogencanreducethelifecycleemissionsoftherefiningprocessby~12percent,dependingonthehydrogensupplysource.15742U.S.DepartmentofEnergyFigure23:HydrogenproductionunitsandpipelinesforhydrogenandnaturalgasintheUnitedStates.CapturingandstoringSMR’scarbondioxidebeforeitisemittedintotheatmospherecanreducethelifecyclecarbonintensityofhydrogenproductionbyover50percent,dependingonCCSratesandupstreamemissions,includingfugitivereleasesduringnaturalgasexcavation,transmission,anduse.158,159Highcarboncapturerates(e.g.,over95percent)andverylowupstreammethaneemissionswillbecritical.AddingCCStoexistingfacilitieswithSMRunitspresentsonepathwaytofasterdecarbonizationofchemicalandrefiningusesofhydrogenatlargescale.ManySMRunitsarecurrentlylocatednearorareintegratedwithrefiningfacilitiesandtakeadvantageoflocallow-costandplentifulnaturalgas.TheGulfCoast,wheremanyexistingSMRunitsarelocated,alsocontainssomeexistingCO2pipelineinfrastructure.Autothermalreforming(ATR)withcarboncaptureisanotherapproachtoproducinghydrogenfromnaturalgasthatisexpectedtocostlessthanconventionalSMRwithCCS,especiallyatcommercialscalesandinregionswithlow-costelectricity.Thisapproachentailsintegratinganairseparationunitwiththereformingprocesstoimprovethermalefficiencyandenablehighercaptureratesandlower-costCCS.Athirdtypeofnaturalgas-basedproduction,methanepyrolysis,useshighheattosplitmethaneintohydrogenandsolidcarbon–thiscanbeanattractiveoptionsincethesolidcarboncanprovideavalue-addedco-productforapplicationssuchasindustrialrubberandtiremanufacturingandforspecialtyproductssuchasinks,catalysts,plastics,andcoatings.43U.S.NationalCleanHydrogenStrategyandRoadmapRecentDOEinvestmentsaresupportingRDD&Dandprovidingloansforscale-upanddeploymentofpyrolysispathways.160,161,162Thecostofhydrogenfrommethanepyrolysispathwaysarehighlydependentonthepriceofthecarbonproductsold,thushighvalueandvolumecarbonmarketsforthecarbonproductsarepivotalformethanepyrolysistoplayalargeroleinthecleanhydrogenspace.In2021,DOE’sLPOannouncedaconditionalcommitmentforaloanguaranteetoMonolith™Inc.(formerlyMonolithNebraska,LLC)forapproximately$1billiontodeploymethanepyrolysistechnologyattheirOliverCreekfacilityinHallam,Nebraska.Hydrogenproducedatthisfacilitywillbeusedtoproduceammoniafertilizer.Deploymentofthisfacilityisalsoexpectedtocreateapproximately1,000jobsduringconstructionand75high-paying,highlyskilled,cleanenergyjobstosupportfacilityoperations.163TheGHGintensityofhydrogenproductionfrommethanefeedstocksalsodependsontheextentofmethaneleaksfromtheproductionandtransportationofthenaturalgassupply.Anticipatedregulationsandadvancesinmethanemonitoringareexpectedtoreducetheseemissionsandprovidegreatermeasurementcertainty.Methaneleakagerates,whichcanhavebothairqualityandtoxicityimpacts,canvarybyoperatorpracticeandbasin.164Today,hydrogenproductionfromSMRsystemsequippedwithCCSisroughly55percentmoreexpensivethanthatofSMRalone.158CostreductionsinCO2transportandstorage,variablecosts,andcapitalcostscouldhelpmeettheHydrogenShottarget,asshowninFigure24.DOEfundsRDD&DtolowercostsandimproveperformanceofSMRandATRsystemswithCCSandpathwaysforfuturecostreductionsincludeimprovedprocessintegrationofCO2/H2separation,useofhighpressureorhightemperatureseparationsthroughmembranes,solidCO2sorbents,advancedcatalysts,andnovelmethodsofoxygenseparation.However,usinglow-costnaturalgasremainsthemostimportantmethodofobtainingalowercostofhydrogenthroughreformingwithCCSpathways.Inadditiontoloweringcost,thenationalstrategycontinuouslyemphasizestheimportanceoflowGHGpathways,includingreductionofupstreamemissions.Capturedcarboncanalsobeutilizedinindustrialprocessesratherthanstoredunderground.Emergingutilizationpathwaysincludeconstructionofbuildingmaterialsandproductionofchemicals.DOEissupportingRDD&DonconversionofCO2tousefulproducts.Figure24:Costreductionsnecessarytoachieve$1/kgproductioncostformethanefeedstockswithCCS.BaselineassumesautothermalreformingwithCCS.Thereareagrowingnumberofcarboncapture,use,andstorageprojectsintheUnitedStates.Forinstance,inLouisiana,AirProductsisbuildingafacilityexpectedtocomeonlinein2026andproduce1,800tonnesofreformation-basedhydrogendaily.ThesitewilltakeadvantageofLouisiana’sgeologytosequester5MMTofCO2eachyear,announcedastheworld’slargest.165,166InIowa,GreenPlains,Inc.,hasannouncedacarbonofftakeagreementforthreeethanolbiorefineries,wherecapturedcarbondioxidewillbetransportedviapipelinetoundergroundgeologicalstructuresinNorthDakotaforstorage.Thisprojectisexpectedtobeginoperationsin2025andshouldsequester10MMTofCO2eachyear.167Policiessuchasthe45QtaxcreditforCCS,whichcannotbecombinedwith45Vtaxcreditsforhydrogenproductionbutthatcanincentivizefossil-basedproduction,canpavethewayforcleanhydrogenproductionatscale.168Inallcaseswhenusingfossilfuels,federalagencieswillprioritizereducingemissionsacrossthevalue44U.S.NationalCleanHydrogenStrategyandRoadmapchainfromproductionthroughend-use.Inaddition,itwillbeimportanttodevelopmeasurementandmonitoringsolutionsandtofactorinhydrogenleakagerisksintodecisionstobuildouthydrogentransportinfrastructure,regardlessofitsprimaryproductionpathway.Finally,federalagencieswillprioritizestakeholderengagementtoaddresspotentialenvironmentalconcernsandcumulativeburdensimposedoncommunitiesthatmayhostfossilfuel-basedhydrogenandCCStechnologies.HydrogenProductionfromBiomassandWasteFeedstocksAdditionalpathwaystohydrogenproductionincludebiomassgasificationwithcarboncaptureandstorageandSMRorATRusingfeedstockssuchasbiogasfromorganiclandfillmatter,sewage,oragriculturalwastesinplaceofnaturalgas.Theseproductionmethodshavethepotentialtobelow-carbonorcarbon-negativedependingonthefeedstock.Lifecycleemissionsacrosstheentirebiomasssupplychain,includingdirectandindirectland-usechanges,andagriculturalinputssuchasfertilizershouldbeconsideredwhenevaluatingthispathway.WhenbiomasspathwaysarecoupledwithCCS,theirnetemissionshavethepotentialtobenegative.Forexample,whenthewastefeedstockisdivertedfromlandfillsandinsteadusedtomakehydrogen,someofthemethanegeneratedbyprocessingthewasteisalsodivertedfromtheatmosphereandthermallyconvertedtocleanhydrogen(i.e.,methanethatwouldnototherwisehavebeenflared,givenregionalbestpracticesandregulations).OtherSystemCostsCostreductionisnotlimitedtohydrogenproductionalone.Forinstance,thecostsforvarioustechnologiesandcomponentsacrossthehydrogenvaluechainareshowninFigure25andFigure26.Agencieswillcontinuetostrengthentheiractivitiestoreducethecostofallkeytechnologiesacrossthevaluechain,includingreducingsupplychainvulnerabilitiesandboostingdomesticmanufacturing.DOEhasreleasedasetofcleanenergysupplychainassessments,includingthesupplychainforfuelcellsandelectrolyzers,inresponsetoPresidentBiden’sExecutiveOrder14017onAmerica’sSupplyChains.169TheBILelectrolyzerandcleanhydrogenmanufacturingandrecyclingprovisions($1.5billionoverfiveyears)willbeused,alongwithannualappropriations,toaddressthisstrategy.15,16Inaddition,TreasuryandIRS,inpartnershipwithDOE,announcedadditionalguidanceforapproximately$4billioninafirstroundoftheQualifyingAdvancedEnergyProjectCredit(48C)forprojectsthatexpandU.S.supplychainsforcleanenergytechnologiesandcriticalmaterialsforcleanenergytechnologyproduction,andforprojectsthatreducegreenhousegasemissionsatindustrialfacilities.170Facilitiesthatmanufactureelectrolyzers,fuelcellvehicles,andotherhydrogentechnologiesareeligibletoapply.171Thecostofhydrogendelivery,storage,anddispensingtoanend-uservarieswidelygiventhemodeofsupplyused.Therearefourmainmethodsofhydrogendeliveryatscaletoday:gaseoustubetrailers,liquidtankers,pipelines(forgaseoushydrogen),andchemicalhydrogencarriers.Tubetrailersandliquidtankersarecommonlyusedinregionswherehydrogendemandisdevelopingandnotyetstable.Gaseouspipelinesarecommonlyusedwhendemandispredictablefordecadesandataregionalscaleofthousandsoftonnesperday.Chemicalcarriersareofinterestforlong-distancehydrogendeliveryandexportmarketsandcanbebroadlyclassifiedasone-wayortwo-waycarriers.One-waycarriersarematerialsthatdonotreleaseaby-productforre-useordisposalafterthehydrogenisreleased(suchasammonia).Two-waycarriersarethosewhoseproductsaretypicallyreturnedforprocessingforreuseordisposalafterthehydrogenisreleased(suchasmethylcyclohexane/toluene).TheuseofchemicalhydrogencarriersisintheearlystagesofcommercializationandRD&Deffortsareneededtoincreasethehydrogen-carryingcapacityofthesematerialsandimprovethecharge-and-dischargerates,reversibility,andoverallround-tripefficiency45U.S.DepartmentofEnergyFigure25:Industry-informedestimatesofmidstreamcostsby2030andpotentialenduses.RepurposedfromDOE’sreport,PathwaystoCommercialLiftoff:CleanHydrogen.Figure25fromDOE’sCommercialPathwaysLiftoffreportsummarizesthekeymidstreaminfrastructurepathwaysandindustrycostestimates.Asmorereal-worldoperationaldatabecomesavailable,agenciesandtheprivatesectorcantargetthekeyprioritiestoenablecostreductionandcommercialviability.Afterdelivery,hydrogenmayneedtobeconditionedonsite(e.g.,pressurized,pre-cooled,orpurified)beforeuse.Athydrogenfuelingstationsforvehicles,compression,storage,anddispensingarethethreelargestdriversoflevelizedcost.R&Deffortsareneededtoreducethecost,improvereliability,andincreasethroughputofthesecomponents.Onceitisdispensed,hydrogenistypicallystoredonboardvehiclesinall-metalorcomposite-overwrappedpressurevessels.R&Disneededtoreducethecostofcurrentdesigns,suchasthroughreductionsinthecostofcarbonfiberoverwrap,andtoadvancenovelapproachestoonboardstorage,suchasininsulatedliquidtanks.Forexample,R&Disneededinnextgenerationfueldispensing,whichhavehighercosts,drivenbythecapitalexpensesinvolvedandcomplexityoffuelingvehiclesathighratesandveryhighpressures(700bar)whilecomplyingwithsafetyprotocols.Commercialized,best-in-classgascompression2030Midstreamcostsifadvancesindistributionandstoragetechnologyarecommercialized:Hydrogendistributionandstorageassumingstate-of-arttechnologyatscale1Downstream:Enduseapplications1.Databasedoncost-downssharedfromleading-edgecompanieswhohavedeployedatdemonstrationscale(orlarger)2.Greaterthanorequalto70%utilization,assumeslinefillathighpressureSources:HDSAM,ArgonneNationalLaboratory;HydrogenCouncil$0.7-1.5/kgat10tpd,250km$0.2-0.3/kgat50tpd,250kmGasphasetruckingLiquidhydrogentrucking$0.1/kgat80barfor7days,600tpd$0.8/kgat500barfor7days$0.2/kgfor7days,50tpdscaleCompressedgastankstorageSaltcavernstorageLiquidhydrogenstorage$0.2-0.4/kgat500bar,10tpd(tankstorage,truckdistribution)$0.1/kgat80-120bar,50+tpd(pipeline,co-locatedelectrolysis)$2.7/kgat50tpdLiquefaction$1-3.6/kg≥700kg/day,700barNextgenerationfueldispensingathighutilization2AmmoniaRefiningChemicalsSteelNGblendingPowergenerationHDMDroadtransportIndustrialheatAviationandmaritimefuelsH2pipeline$0.1/kgat600tpd,300km,12”OD$0.1/kgat~5000tpd,1000km,42”ODIndustryGasreplacementTransportCleanHydrogenProduction46U.S.DepartmentofEnergyFigure26:Examplesofcostdriversforhydrogenproduction,distribution,andstoragetechnologies.17247U.S.DepartmentofEnergyStrategy3:FocusonRegionalNetworksThethirdstrategywillfocusonachievinglarge-scale,commerciallyviabledeploymentofcleanhydrogenbymatchingthescaleupofcleanhydrogensupplieswithaconcomitantandgrowingregionaldemand.Co-locatinglarge-scalecleanhydrogenproductionwithmultipleend-usescanfosterthedevelopmentoflow-costhydrogenandthenecessarysupportinginfrastructuretojumpstartthehydrogeneconomyinimportantmarketsegments.Inaddition,pursuingaregionalstrategyforhydrogendevelopmentwillallowcompaniesacrossthesupplychaintotakeadvantageofthebenefitsthatcomewhensimilarfirmslocatenearoneanotherinindustrialclusters.Thesecanincludethebenefitsthatcomefromsharedinfrastructureincludingaccesstorawmaterialsandotherdownstreamsupplychains,transportationandtransmissionsystems,andastrongandwell-trainedlaborpool.Inaddition,industrialclustersbenefitfromtheproximityofinnovationtomanufacturing,leadingtoknowledgesharingacrossfirms.Industrialclusterscanalsohelptocreatestrongersocialandcivicengagement,asworkershavemultiplejobopportunitiesintheregionsoaremorelikelytoformlastingtieswiththecommunity.Ultimately,developinghydrogenthroughahubapproachwillcreatestrongerandmorecompetitiveregionaleconomies,muchasthecreationofautoindustry(e.g.,Detroit)hasdoneinthepast.Fromatechnicalstandpoint,DOE’sregionalcleanhydrogennetworkswillcreatenear-termandlong-termjobs,increasetaxrevenuesforregionaleconomies,andreduceemissionsandmultipleagencies,includingDOL,willworktogethertodetermineopportunitiesforbothnear-termandsustainedjobsbenefits.RegionalCleanHydrogenHubssupportedbytheBILwillcreatenetworksofhydrogenproducers,consumers,andlocalconnectiveinfrastructuretoacceleratetheuseofhydrogenasacleanenergycarrierthatcandeliverorstoretremendousamountsofenergy.Shared–i.e.,“openaccess”-scaledinfrastructureiscriticaltoreducingthedeliveredcostofcleanhydrogenandensuringthatusecases,particularlythosethatdonothavecollocatedproductionandofftake,canreachcommercialscale.Midstreaminfrastructurerequiresrapidscale-up,withinvestmentrequirementsgrowingfrom$2billionto$3billionannuallyfrom2023to2030,increasingto$15billionto$20billionannuallyfrom2030to2050,asmoredistributedend-useslikeroadtransportationadoptcleanhydrogenandlocalhubsandregionalnetworkscanbelinkedintoanationalnetwork.TheHydrogenShotRequestforInformation(RFI),issuedin2021,receivedover200responsesdescribingdiverseresources,end-uses,andimpactpotentialinvariousregions.173Figure27isbasedonthoseRFIresponsesandsynthesizesdistinctregionalexamplesandadvantagesincleanhydrogenproduction,storage,andend-usepotential.Respondentsidentifiedveryspecificend-useopportunitiesforcleanhydrogeninsomeregions,suchasforportcommunitiesoroffshorewindgeneration.Inotherregions,stakeholdersindicatedastronginterestinleveragingabundantenergyresourceslikebiomassorinfrastructuresuchasenergystorageorgeologicalcaverns.Stakeholdersalsoprovidedexampleswheredisadvantagedortribalcommunitiescouldbeengaged,andexamplesofpotentialjobopportunities.DetailsandexampleswereprovidedinpresentationsattheHydrogenShotSummitandDOEwebinars.174,17548U.S.DepartmentofEnergyFigure27:ExamplesofregionsidentifiedbyresponsestotheHydrogenShotRequestforInformation(RFI).TheHydrogenShotRFIunderlinedthenumerousopportunitiesforstrategichydrogenuseacrosstheU.S.Inmanycases,thecurrentinfrastructurethatrespondentshighlightedcansupportearlyregionaldeploymentneeds.TheBIL’sRegionalCleanHydrogenHubprovisionprovidesaunique,unprecedentedopportunityfortheU.S.tojumpstartacleanhydrogeneconomywhileachievingtangibleregionalandcommunity-levelbenefits.Datagatheredfromthehubswillbeusedinfutureanalysestoidentifyoptimalapproachestomarketliftoff,suchasusingcontractsfordifference;matchingproductionwithofftakers;creatingtargeted,large-scaledemandwithanchortenants;andusingexistinginfrastructurewhereapplicable,includingCCSandotherpipelineinfrastructure.Figure28summarizesthecriticalelementsofsuccessfulRegionalCleanHydrogenHubs,thethree“pillars”thatcharacterizethehubs(pertheBIL)andoutlineskeydesiredoutcomes.Near-term,absenceoflong-termofftakecontractstomanagevolumeandpriceriskalsopresentsachallengetoacceleratingthecleanhydrogeneconomy.Shiftingfrombilateralcontractstoacommoditymarketcouldlowerthecostofcapitalbyreducingcounterpartyrisk,butthetransitionfrombilateralagreementswouldrequiresignificantlyincreasedcoordinationbetweeninvestorsandprojectdevelopersacrossthevaluechain.Ofthe12MMT/yearofcleanhydrogenproductioncapacityannnouncedintheU.S.todate,only~10percenthasachievedfinalinvestmentdecision(FID),largelyduetothislackoflong-termofftake.3Securinglong-termofftakewillbecriticaltoensureproductionprojectsreachFIDandcanaccesslowcostofcapital(e.g.,bonddebt).Long-termofftakeagreementsintheformofpowerpurchaseagreements(PPAs)werecriticalforthescale-upofwindandsolar,butthehydrogenmarket,likeothercommoditymarkets,hasnothistorically49U.S.NationalCleanHydrogenStrategyandRoadmapoperatedwiththesekindsoflong-term,fixedpricecontracts.Prospectivecleanhydrogenbuyersareadditionallyhesitanttocommittomulti-yearofftakegivenprojectedcleanhydrogencostdeclines.Policiesormechanismsthataddressthisissuecouldplayaroleintheearlyscale-upofcleanhydrogenprojects.Longer-term,thedevelopmentofamaturecommoditymarketforcleanhydrogenanditsderivativescanalsoalloweasieraccesstofinancingbyprovidingtransparentpriceinformationandallowingdeveloperstohedgepriceandcounterpartyrisk.Thedevelopmentofpricetransparencyandstandardcontracttermsarenecessaryprerequisitesforafunctioningcommoditymarketforcleanhydrogen.Figure28:CriticalelementsofsuccessfulRegionalCleanHydrogenHubsandkeyoutcomes.RegionalproductionpotentialAspartofthestrategy,DOEwillcontinuetorefineandupdateregionalanalysesacrossthehydrogenvaluechain,includingtheavailabilityofwaterandotherresources.Usingdatafromnationallaboratoryandindustryanalyses,DOEestimatedthetechnicalpotentialforproducinghydrogenfromdiversedomesticresources.ThetechnicalpotentialestimatesfortheserenewableresourcesareshowninFigure29andFigure30.Figure29:ProductionPotentialofHydrogenAcrosstheUnitedStates.176Lowest-costproductionmethodsforcleanhydrogenwilldependuponregionalresourceavailability,andearlymarketdevelopmentswillneedtobelocatednearend-userstoreducethecostsofhydrogendelivery.Thecombinationofnaturalresources,infrastructureassets,andhydrogendemandopportunitiesvariesfromregiontoregionandwilldetermineoptimalregion-specificapproaches.Solarandwindresourcepotentialsdominateintheplains,southwest,andmountainregions.Biomassresourcesareprevalentinthemidwestern,northeastern,andsoutheasternUnitedStates.Majorshalenaturalgas-producingregionsincludetheMarcellus,Permian,andHaynesvilleformations.GeologicCO2storagepotentialisdominantintheindustrialheartlandandtheGulfCoast,wherenaturalgasresourcesarealsoprevalent,asshowninFigure32.Withtoday’snuclearfleetandnext-generation,advancednuclearapproaches(includingsmallmodularreactors),therearemultipleregionalopportunitiesforclean,firmnuclearpower.Futureworkwillincludeanassessmentoftheeconomicopportunitiesassociatedsupplyinghydrogenbyleveragingeachoftheseregionalresources.50U.S.DepartmentofEnergyFigure30:Productionpotentialforcleanhydrogenfromonshorewind,offshorewind,biomassresources,existinghydropower,concentratedsolarpower,andutility-scalephotovoltaicsolarpower.AlaskaandHawaiiwillbeaddedinfutureroadmaps.(Source:NREL176)a)Hydrogenproductionpotentialfromonshorewindresources,bycountylandareab)Hydrogenproductionpotentialfromoffshorewindresources,byareac)Hydrogenproductionpotentialfromsolidbiomassresources,bycountylandaread)Hydrogenproductionpotentialfromexistinghydropowerassets,bycountylandareae)Hydrogenproductionpotentialfromconcentratedsolarpower,bycountylandareaf)Hydrogenproductionpotentialfromutility-scalePV,bycountylandarea240,000100,000<10,000740,000370,000<3,00055,00010,000<1,000230,000100,000<1,0001,600,000500,000<10,0001,300,000750,000<250,000(kg/km²/year)(kg/km²/year)(kg/km²/year)(kg/km²/year)(kg/km²/year)(kg/km²/year)51U.S.NationalCleanHydrogenStrategyandRoadmapElectrolyzerswouldlikelyneedtobeinregionswithhighwindandsolarpotential,oralongsidehighcapacityfactorcleanpower,suchashydroelectricandnuclearpowerplants.Inregionswithhighrenewablespenetration,electrolysiscanhelpmanagevariableloadsonthegrid,utilizingexcesscapacityduringpeakproductiontoproducehydrogenratherthanlettingpowerbecurtailed.Forinstance,electrolyzersintegratedwithoffshorewindinregionswithtransmissionconstraintscouldcreateanotherrevenuestreamfortherenewablegeneration.Federalagencieswillassessvariousoptionsincollaborationwithstatesandlocalcommunities.Regionalavailabilityofwaterresourcesisalsoanimportantfactorinthesitingandsustainabilityofhydrogenproductionfacilities.Whilethewatersupplyrequiredforhydrogenproductionislikelytorepresentasmallfractionofannualfreshwaterconsumptionnationwide,177wateravailabilitycanvarywidelybyregion.Futureanalysismayidentifypreferablelocationsfordeploymentsofhydrogenproductionfacilitiesbasedonregionsofabundantwatersupplyandmayalsoidentifystrategiestodeploysupportinginfrastructureinwater-stressedregions,suchaswaterdistributionpipelines,reclaimedpurificationsystems,anddesalinationplants.RegionalstoragepotentialAsreal-worldhydrogenprojectsrampup,federalagencieswillcontinuetoassessoptimalapproachesandsitingopportunitiesforhydrogenstorageatscale.Hydrogenstoragecandecouplepowergenerationfromenergyuseandachievelowercoststhanothertechnologiesatscalesofmultipledaysorweeks.178Hydrogencanbestoredingaseousorliquidvessels,inundergroundformations,orinmaterials,suchashydrogencarriers,dependingonhowitwillbeused.Eachapproachhasbothadvantagesanddisadvantages;severalDOEandindustryprojectsandanalysesareunderwaytoreducecostandpotentialemissionsandimproveefficiencyandstoragecapacity.Tanksandliquiddewarsarealreadycommerciallyusedinindustryandathydrogenfuelingstationstostorehydrogenatscalesofhundredsofkilogramstomanymetrictonnes.Limiteddeploymentsoflarger-scalevesselshaveprimarilystoredhydrogeninliquidformforaerospaceapplicationsthatrequiretheuseofliquidhydrogenonboard.Theworld’slargestliquidhydrogenstoragevesseltodayisatKennedySpaceCenterinFlorida,storing1.25milliongallonsorover330tonnesofliquidhydrogen.179Evenlargerscalesofhydrogenstoragecurrentlyemployundergroundcavernsandareusedtobufferseasonaldifferencesbetweenhydrogensupplyanddemandforthepetrochemicalsector.TheU.S.hasthreelarge-scalegeologicalhydrogenstoragecavernsincludingtheworld’slargestinBeaumont,TX,storingover7,000tonnesunderground.44Undergroundhydrogenstoragecavernshaveprimarilybeenexcavatedinsaltdepositsnearthepointofhydrogenuse,withlimiteddemonstrationsinhardrock.Additionalgeologiesusedfornaturalgasstorageandcouldpotentiallybeusedforhydrogeninthefutureincludedepletedoilandgasreservoirsandaquifers.Figure31,below,showstheapproximateavailabilityofthesegeologicalformationsthroughouttheUnitedStates.Inmanycases,theseregionsoverlapwiththedominantproductionpotentialregionsshowninFigure29.DOEfundsresearchonsubsurfacehydrogenstoragethroughtheSubsurfaceHydrogenAssessment,Storage,andTechnologyAcceleration(SHASTA)program.180Theprogramaimstoexpandthetechnicalstorageviabilityofhydrogenbeyondsaltandhardrockformationstoexpandthegeographicdiversityoflow-costhydrogenstorageopportunities.DOEwillcontinueitsanalysesandRDD&Donstoragelocationopportunitiesandontechnologiesincludingadvancedhydrogencarriers,suchasammoniaandliquidorganichydrogencarriers,asthesecancarryhydrogenathighenergydensities.52U.S.DepartmentofEnergyFigure31:UndergroundstorageopportunitiesintheUnitedStates.(Source:SHASTA181)ManyofthesegeologiesandreservoirscanalsobeusedforpermanentCO2storageinsupportofcleanhydrogenproduction.Figure32depictsthelocationsofpotentialCCSalongwithexistinghydrogenandammoniaproductionplants.OngoinganalysisprojectsarecurrentlyidentifyingapproachestooptimallyleveragetheseresourcesanddeployfutureCO2andhydrogeninfrastructureforcross-sectordecarbonization.Figure32:PotentiallocationsforCCSbasedongeologicformationsandexistinghydrogenandammoniaplantsintheUnitedStates.AlaskaandHawaiiwillbeaddedinfutureroadmaps.(Source:Teletzke,G.F.182)53U.S.DepartmentofEnergyRegionalend-usepotentialAsshowninFigure33,someregionsinthecountryhaveindustrialclusterswhereseveralindustriesarepotentialcandidatestoadopthydrogenasafeedstockorenergysource.Decarbonizingtheseindustrysegmentswilldependontheviabilityofintegratingcleanhydrogenonasector-by-sectorandregion-by-regionbasis.Yet,thereisstrongpotentialtoleveragenetworksthatcanenablehydrogeninfrastructureorlarge-scaleCCSanddevelopbestpracticesthatcanbeusedinothersectors.Figure33:IndustrialclustersintheUnitedStatescreatepotentialregionsfordecarbonizationhubs.(Source:Psarrasetal.183)Strategicdeploymentofcleanhydrogenwillneedtoensureclustersarenotjustacollectionofdisparateprojects.Projectsshouldbesized,scoped,andplannedincoordinationwitheachothertomatchscale,cost,andduration.Coordinatedprojectswillhelpavoidstrandedassetsbyprovidingacriticalmassofofftakers,leveragingCCSandotherinfrastructure,andensuringpublicinvestmentspaydividendstomeetournet-zerogoal.Regionalcleanhydrogenhubswilldemonstratetheefficacyofcoordinatingregionaldecarbonizationeffortsandsupportthebusinesscaseoftheseprojectstostimulateprivatecapitalinvestment.Thehubswillalsocreateavenuestoengagestakeholdersateverystageoftheprocesstoearnpublicsupport,developcommunitybenefitagreements,andensureprojectsadvanceenvironmental,health,andequitygoals.54U.S.NationalCleanHydrogenStrategyandRoadmapIndustriesthatalreadyconsumehydrogenatscale,suchasammoniaproduction,arelikelytobeearlyadoptersofcleanhydrogen,giventheirexistingsupplychainsandeconomiesofscale.Figure34andFigure35showexamplesofcurrentandfuturehydrogenproductionpotentialandtheexistingammoniaproductionsites.Figure34:ExistinghydrogenandammoniaproductionplantsandpotentialwindenergyresourcesintheUnitedStates.Figure35:ExistinghydrogenandammoniaproductionplantsandnuclearenergyplantsintheUnitedStates.55U.S.DepartmentofEnergySupportingEachStrategyTosupportallthreekeystrategies,federalagencieswillleveragetheentirecontinuumofactivitiesacrossbasicscience184throughappliedresearch,development,demonstration,andlarge-scaledeployments.AsshowninFigure36,thecontinuumofactivitieswillbesupportedbyfoundationalandcrosscuttingeffortstopromotediversity,equity,inclusion,andaccessibility;engagecommunities,rangingfromenvironmentaljusticegroupstoTribes,tribalorganizationsandlaborunions;developtheworkforce;advancepolicy;supportthetechnologyandenergytransition;andenablemarketadoptionatscale.Figure36:FoundationalandcrosscuttingeffortswillsupporttheentirelifecycleofactivitiesatDOE,frombasicresearchthroughlarge-scaledeployment.WorkforcedevelopmentandgoodjobcreationwillbesupportedbyIRA.TheU.S.TreasuryDepartmentandInternalRevenueServicepublishedguidanceontheIRA’sprevailingwageandapprenticeshiprequirements,whichwentintoeffectJanuary29,2023.185Therequirementsapplytoseveraltaxcreditsrelevanttocleanhydrogentechnologies,includingtheCleanHydrogenProductionTaxCredit,theAlternativeFuelRefuelingPropertyCredit,andtheCreditforCarbonOxideSequestration,amongothers.185TheDepartmentofLaborisresponsiblefordeterminingtheprevailingwageandcanassisttaxpayersandcontractorstoensurethattheyunderstandtheirresponsibilitiestosecurecompliance.185TheU.S.Government’sRDD&Dactivitiesareinformedbymarket-basedtechnicaltargetsthatenablehydrogenusetobecompetitivewithincumbentfuelsacrosssectors.TheBILrequiresDOEtodeveloptargetsfortheprogramtoaddressnear-term(upto2years),mid-term(upto7years),andlong-term(upto15years)challengestotheadvancementofcleanhydrogensystemsandtechnologies.186KeytargetsareshowninTable1.Activitiesacrossgovernment,industry,andacademiamustworkinconcerttoadvancetechnologiesandprovidemarketsignalstowardthesetargets.And,toensurethatthecleanhydrogenmarketisself-sustaining(e.g.,offersmarket-ratereturns)whencertainincentiveprograms(e.g.,45V,45Q)expire.Manyexistingconsortiaandinitiativesarealreadyworkingtoachievethesegoalsthroughcollaborationsbetweennationallaboratories,industry,andacademia.KeyexamplesincludeDOE’sH2NEWconsortiumonelectrolyzertechnologies,theM2FCTconsortiumtoadvancefuelcellsforheavy-dutytrucks,theHydrogenMaterialsCompatibilityConsortium(H-Mat),andotherR&Dprojectsandfirst-of-a-kinddemonstrationsfundedthroughprevioussolicitations.56U.S.DepartmentofEnergyTable1:KeyProgramTargets2022-2036.2022-20232024-20282029-2036Production•3ormorepathwaysidentifiedwithpotentialtomeetHydrogenShot•10,000hoursofhigh-temperatureelectrolyzertesting•3ormorepathwaysassessedforlifecycleemissions•1.25MWofelectrolyzersintegratedwithnuclearforH2production•2ormoreconditionalloanprogramagreements•10ormoredemoswithrenewables(includingoffshorewind),nuclear,andwaste/fossilwithCCS•$2/kgcleanH2fromelectrolysisatscaleby2026•51kWh/kgefficiency;80,000-hrlife;and$250/kWforlowtemperatureelectrolyzers•44kWh/kgefficiency;60,000-hrlife;and$300/kWforhightemperatureelectrolyzers•20MWofnuclearheatextraction,distribution,andcontrolforelectrolysis•10MMTperyearby2030ormoreofcleanH2producedintheU.S.fromdiversesources•$1/kgcleanH2productionfromdiverseresourcesatscale•46kWh/kgefficiency;80,000-hrlife;$100/kWuninstalledcostforlowtemperatureelectrolyzers•80,000-hrlife$200/kWcostforhightemperatureelectrolyzerswhilemaintainingorimprovingefficiencyInfrastructure&SupplyChains•10kg/minaverageH2fuelingrateforheavy-dutyapplications•40%reductioninfootprintofliquidH2fuelingstationsvs.current(2016)code.•50%increaseinsealandmetaldurabilityinH2servicevs.2018baseline•400kg/hr.high-pressurecompressorsandcryopumps•5%orbetteraccuracyforH2flowmetersatupto20kg/minflow•7kWh/kgefficiencyforH2liquefaction•50%costreductionofcarbonfiberforH2storagevessels(vs.2020)•50%ofmembrane/ionomermaterialrecoveryand>95%ofplatinumgroupmetals(PGMs)recoveryfromfuelcellmembraneelectrodeassemblies(MEA)pathwaysidentifiedthroughrecyclingandupcycling•3GWormoreelectrolyzermanufacturingcapacityintheUnitedStates•$4/kgH2costatscale(includingproduction,delivery,anddispensingatfuelingstations)•70%ofmembrane/ionomermaterialrecoveryand99%ofPGMsfromMEApathwaysidentifiedthroughrecyclingandupcycling•3ormorepathwaysvalidatedforemissionsreductions,whilemeetingenvironmentalandenergyjusticeprioritiesEnd-UseandEnablers•$170/kWheavy-dutytruckfuelcellcostvs.$200/kWbaseline•18,000-hrfuelcelldurabilityforbuses.•1.5MWormoreofH2fuelcellsfordatacenterresilience•1MWscaleelectrolyzerandfuelingmarineapplications•15fuelcelldeliverytrucksoperatingindisadvantagedcommunity,creatingpotentialformarketgrowththatreducesemissionsandcreatesjobs•1ormoreintegratedH2forammoniaproductiondemonstration•$140/kWheavy-dutytruckfuelcellcost•50%reductionoffuelcellPGMsvs.2020baseline•1ton/weekreductionofironwithH2andpathwayto5,000tonnes/day•9ppmNOxemissionsfor100%H2turbines,2ppmwithselectivecatalyticreduction•3H2fuelcellSuperTruckprojectscompleted•2ormorepilotprojectswithtribes•4templatecommunitybenefitagreements•4ormoreRegionalCleanHydrogenHubsusingdiverseresourcesandformultiplestrategicend-uses•$80/kWheavy-dutytruckfuelcellcostwhilealsomeetingdurabilityandperformance•$900/kWand40,000-hrdurabilityfuel-flexiblestationaryfuelcells•4ormoreend-usedemos(e.g.,steel,ammonia,storage)atscale•10MMTperyearormoreofcleanH2usedinstrategicmarketsatscalealignedwiththeNationalHydrogenStrategygoalModeledcostatscaletomeetHydrogenShotgoal57U.S.DepartmentofEnergyC:GuidingPrinciplesandNationalActionsGuidingPrinciplesFederalAgencieswilladheretoguidingprinciplesineightcategoriesFigure37:Eightguidingprinciplesforthedevelopmentofcleanhydrogenproduction,transport,delivery,storage,anduse.•Enabledeepdecarbonizationthroughstrategic,high-impactuses:TheU.S.Governmentwillenablethenationalnet-zeroandcleangridgoalsthroughtargeteddeploymentsofcleanhydrogeninsectorswhereitsusehasthemostimpact,includingindustrialprocesses,heavy-dutytransport,high-temperatureheat,andlongdurationenergystorage.Thesestrategicdeploymentswillbeinformedthroughanalysesandstakeholderinputtoaddresskeyprioritiesincludingenvironmental,energyjustice,andeconomicbenefits.•Catalyzeinnovationandinvestment:TheU.S.Governmentwillfosterpartnershipswithindustry,academia,nationallaboratories,andotherstakeholderstoinvestininnovationacrosstheentireRDD&Dvaluechainforcleanhydrogentechnologies.DOE’sactionswillstimulategrowth,acompetitivedomesticindustry,andsustainedprivateinvestment,buildinguponAmericaningenuity,talent,andinitiative.Demonstrationanddeploymentprograms(e.g.,RegionalCleanHydrogenHubs)willhelpde-riskfirst-of-a-kindprojectsandscaled,sharedinfrastructure—helpingtounlocklowerdeliveredcostofhydrogenaswellasaccesstocommercialdebt.•FosterDiversity,Equity,Inclusion&Accessibility:TheU.S.Governmentwillpromotediversity,equity,inclusion,andaccessibilitytoeffectivelyadvancetheU.S.research,innovation,andcommercializationenterprise.Federalagencies’actionswillsupportstewardshipandpromotionofdiverseandinclusiveworkplacesthatvalueandcelebrateadiversityofpeople,ideas,cultures,andeducationalbackgroundsthatarefoundationaltodeliveringonthecleanhydrogenstrategy.58U.S.NationalCleanHydrogenStrategyandRoadmap•AdvanceEnergyandEnvironmentalJustice:AsacoveredprogramundertheJustice40initiative,theU.S.Governmentwillprioritizeenergyandenvironmentaljustice.Federalagencies’actionswillseektocreatenewprograms,toolsandinitiativesthatwillincreasetransparency,communityengagement,economicopportunities,andaccesstocleanhydrogentechnologiesthatcanhelpimprovethehealthandwell-beingofcommunities,includingTribalNationsandothercommunitieswhohavebeenhistoricallyunderservedinalignmentwiththeJustice40Initiative.Sitingandbenefitsofcleanhydrogendeploymentsshouldbedevelopedthroughmeaningfulandsustainedengagementwitheachcommunitythatdesirestotakepartinthecleanhydrogeneconomyandgovernment-widetoolssuchastheClimateandEconomicJusticeScreeningTool(CEJST)187shouldbeconsultedpriortoengagementtohelpdevelopersidentifyburdens,disparities,andopportunitiesinoverburdenedandunderservedcommunities.Additionalgovernment-sponsoredcommunityengagementsandlisteningsessionsareplannedtohelpsurfacefrontlineandfencelinecommunityconcerns,specificallyaroundhydrogentechnologiesincludingCCStechnologies.Effortsarealreadyunderwaytounderstandandaddresscommunityconcerns,rangingfromNOxemissionstoenvironmentalhealthrisksassociatedwithunconventionalnaturalgasproduction,per-andpolyfluoroalkylsubstances(PFAS)useinhydrogenfuelcellsandelectrolyzes,andhydrogenleakagedetection.Futureguidancewillbeissuedtohelpidentifyandquantifybenefitsthatwillflowtodisadvantagedcommunities.Safepracticesintheproduction,storage,distribution,anduseofhydrogenwillcontinuetobeanintegralpartofdevelopment.•GrowQualityJobs:TheU.S.Governmentwillfocusonpreservingandgrowingqualityjobs.Thesejobsaredefinedasgood-paying,family-sustainingjobswithpathwaysforadvancement,workervoiceinworkplacehealthandsafetyplandesignandimplementation,andthefreeandfairchancetojoinaunion.Federalagencies’actionswillalsoprovideopportunitiesforworkersandcommunitiestransitioningawayfromcarbon-intensivesectors,leveragingexistinganddevelopingnewskillsacrossindustriesbyutilizingandexpandingregisteredapprenticeshipprograms,developingsectoralstrategiesforworkforcedevelopment,andsupportingjobgrowthateachstepinthehydrogenvaluechain—fromequipmentmanufacturingandtruckingtopipelineconstructionandCCS.DOE’sreport,PathwaystoCommercialLiftoff:CleanHydrogen,estimatedapproximately100,000newdirectandindirectjobscouldbecreatedrelatedtothebuild-outofnewprojectsandcleanhydrogeninfrastructure.3Directjobsrelatetoemploymentinrolessuchasengineeringandconstruction,andindirectjobsrelatetomanufacturingandtherawmaterialsupplychain.•Spurdomesticmanufacturingandrobustsupplychains:TheU.S.GovernmentwillpromoteU.S.manufacturing,ensurerobust,secure,andresilientsupplychains,andincreaseexports.Federalagencies’actionswillutilizemultipletools,fromgrantstofinancingtofacilitatingpartnerships.RecentDOEanalyseshavecharacterizedthemakeupofhydrogentechnologies,aswellasvulnerabilitiesinthesupplychainforelectrolyzersandfuelcells.188DOEisnowsupplementingthisworkwithsubstantialRD&Dinvestmentstoreducethecostofelectrolyzerandfuelcellmanufacturingandenablescale-up,expandthesupplychainforelectrolyzerandfuelcellcomponents,andadvancerecyclingtechnologies,insupportofEPACT-2005Sections815and816(asenactedbyBILSection40314).189•Enableaffordabilityandversatility:TheU.S.Governmentwilltargetaffordabilityandcreateflexibilityintheenergysystembyleveragingandcouplingdiversesources,includingrenewablesandhighbaseloadcleanassetssuchasnuclearpower,utilizingfossilandCCSinfrastructurewhereappropriate,andenabling59U.S.NationalCleanHydrogenStrategyandRoadmapresilienceandenergysecurity.Byusingcleanhydrogenasafuelorfeedstockorasanenergycarrierandstoragemedium,federalagenciescanprovidemultiplerevenuestreamsacrosssectorsandavoidstrandedassets.•Approachholistically:TheU.S.Governmentwillapproachcleanhydrogendevelopmentanddeploymentholisticallyandwillcultivatesustainablebestpracticesthroughtargeteddevelopmenttosupport—notcompetewith—otherdecarbonizationtechnologiessuchaselectrification.Federalagencieswillfosterrigorousandtransparentanalysesonsocial,environmental,economic,andenergyimpactstohelpguidesustainabledevelopmentofthenascentglobalcleanhydrogenindustry.FederalagencieswillusetheseguidingprinciplesastheU.S.NationalCleanHydrogenStrategyandRoadmapisdevelopedandcontinuouslyrefined.Principlesofequityandjusticeareahighpriority,consistentwiththeBidenAdministration’scommitmentstoensurethatoverburdened,underserved,andunderrepresentedindividualsandcommunitieshaveaccesstoFederalresourcespursuanttoExecutiveOrder(E.O.)13985,AdvancingRacialEquityandSupportforUnderservedCommunities;190E.O.14020,EstablishmentoftheWhiteHouseGenderPolicyCouncil;191andE.O.14008,TacklingtheClimateCrisisatHomeandAbroad.192Communityengagementandcollaboration,includingworkundertakenthroughcommunitybenefitagreements,willtaketimeandmustbepartofalong-termeffort.Programmaticchangesareindevelopmentthatextendresponsetimes,lowerbarriersforparticipation,andincreaseopportunitiesforcommunityengagement.Byrecognizingandaddressingthechallengesearlyonandacrossthehydrogenvaluechain,wewillcollectivelyaccelerateprogresstowardsourgoals.Withtherightstrategyandimplementationplan,cleanhydrogentechnologiescanreducenotonlyGHGemissions,butemissionsofnitrogenoxidesandparticulatesfromheavy-dutyroadtransportationandstationarypower,improvehumanandenvironmentalhealth,andprovideresilienceandenergysecurity—allwhilecreatingnewregionaleconomicopportunitiesandpositioningtheUnitedStatesasagloballeaderinanascentindustry.60U.S.DepartmentofEnergyActionsSupportingtheU.S.NationalCleanHydrogenStrategyandRoadmapFederalagencies,inpartnershipwithstate,local,andTribalgovernments,andstakeholderswilltakeactiontodevelopanddeploycleanhydrogentechnologies.Plannedactionsareoutlinedacrossthenear-termthrough2025,mid-termto2029,andlongertermto2035.TheplansoutlinedinthisreportwillbeusedtofulfillthereportingrequirementintheBILandareexpectedtobecontinuallyrefinedandupdated.Theyarebasedonlessonslearnedandbestpracticesfromthedevelopmentofbothhydrogenandotheradvancedtechnologies,consideringlocalandregionalopportunitieswithafocusonenvironmentalandenergyjustice,andforgingpartnershipsacrossgovernment,industry,investors,andacademicandresearchinstitutionstospeedprogress.Severaloftheseactionsarealreadyinprogressandwillbesupportedbyexistingandrecentlyannouncedpublicfundingopportunities,suchasinitiativesunderDOE’sLPOandRegionalCleanHydrogenHubsunderBIL.Subjecttoannualcongressionalappropriationsandprivatesectorinvestment,federalagenciesandotherstakeholderswillundertakeadditionalactionsacrosstheRDD&Dpipeline.DOEwilltrackkeyindicatorsandmetricstotrackprogressoftheU.S.hydrogenstrategy.WhilepastanalysesofthebenefitsofhydrogenhavelargelyfocusedonGHGemissions,ongoingandplannedactivitiesarealsoaimingtoquantifyotherbenefits,suchasmitigationofcriteriapollution,jobcreation,anddomesticleadershipininnovation.FutureversionsofthisRoadmapwilldescribetheseimpactsingreatdepth.193Thisisonlythebeginningofthenationalefforttoinnovateandbuildthefullvaluechainforcleanhydrogenfromproductionthroughdeliveryandstorageinfrastructure,marketadoptionandeconomicdevelopment—continuedeffortandinvestmentwillberequired.TheU.S.GovernmentistakingaholisticviewofcatalyzinginvestmentsandactionstoacceleratethecommercializationofhydrogenandrelatedtechnologiesacrosstheNation.TheNationalStrategyandRoadmapalignswiththekeyhydrogenprovisionsintheBIL,asshowninFigure38,andwilladvancethebroadernationalefforttoinnovateandbuildthefullvaluechainforcleanhydrogen.61U.S.DepartmentofEnergyFigure38:TimelineforkeyhydrogenprovisionsintheBipartisanInfrastructureLaw.Federalagencieswillworkwithstates,Tribalgovernments,communities,andotherstakeholderstoidentifyregulatorygapsanddevelopstrategiestoaddressthem.Figure39,basedoninputacrossagencies,showsvarioussegmentsofthehydrogenvaluechainfromproductionthroughend-useandliststheagenciesthatmayhavejurisdictioninkeyareas.BasedonaDOE-fundedreportbySandiaNationalLaboratories,194Table2andTable3(below)showexamplesofspecificregulatoryactivitiesbythevariousagencies.AgencieswillworktogethertoregularlyupdatethisassessmentandtoidentifyandprioritizeactionstoensuretheU.S.canacceleratethebuildoutofhydrogenproduction,delivery,storage,andend-use,whilealsoaddressingpotentialenvironmentalconcernsandensuringequityandjusticeforoverburdened,underserved,andunderrepresentedindividualsandcommunities.62U.S.DepartmentofEnergyFigure39:TheregulatorylandscapeinvolvesasuiteofFederalandlocalregulatorswhomayoverseeeachsegmentofthehydrogenvaluechain.(Source:SandiaNationalLab)63U.S.NationalCleanHydrogenStrategyandRoadmapTable2:ExamplesofregulatoryactivitiesbyU.S.agenciesrelevanttohydrogenproduction,storage,anddelivery.AgencyRegulationSummaryProductionEPA40CFRPart98Requiresgreenhousegasreportingbyapplicablefacilities,includingrelatedtohydrogenproductionandotherapplicablesourcecategories.DOEIIJASec40315(Sec822ofEPACT-2005)DirectsDOEtodevelopacleanhydrogenproductionstandard.StorageFAA14CFRPart420Dictatestheseparationdistancerequirementsforstorageofliquidhydrogenandanyincompatibleenergeticliquids.FERC18CFRPart157Issuanceofcertificatesofpublicconvenienceandnecessitytoprospectivecompaniesprovidingenergyservicesorconstructingandoperatinginterstatenaturalgaspipelinesandstoragefacilities.EPA40CFR144,146Authorizationtoinjecthydrogenforthepurposesofsubsurfacestorage.OSHA29CFRPart1910Dictatesthesafetyofthestructuralcomponentsandoperationsofgaseousandliquidhydrogenstorageanddelivery.TransportationbyPipelineBSEE43USCChapter29Managescomplianceprogramsgoverningoil,gas,andmineraloperationsontheOuterContinentalShelf(OCS).FERC18CFRPart153,157,and284Applicationsforauthorizationtoconstruct,operate,ormodifyfacilitiesusedfortheexportorimportofnaturalgas.Issuanceofcertificatesofpublicconvenienceandnecessitytoprospectivecompaniesprovidingenergyservicesorconstructingandoperatinginterstatenaturalgaspipelinesandstoragefacilities.Regulationofnaturalgastransportationininterstatecommerce.PHMSA49CFRPart192,195Prescribesminimumsafetyrequirementsforpipelinefacilities,pipelines,andthetransportationofgasorhazardousliquidswithinthelimitsoftheoutercontinentalshelf.USCG33CFRPart154Regulationsforfacilitiestransferringhazardousmaterialsbackandforthfromavesseltoafacility.TransportationbyRailPHMSA49USC5117and49CFRPart172,173,174,179,180Listsandclassifieshazardousmaterialsfortransportationandprescribestherequirementsforpapers,markings,labeling,andvehicleplacarding.Providesrequirementsforpreparinghazardousmaterialsforshipmentaswellinspection,testing,andotherrequirementsfortransportationofhazardousmaterialsinoronrailcars,includingconstruction&usageinstructionsforDOT-113A60Wtankcars.Givestheauthoritytoauthorizeavariancethatisstillatthesamesafetylevel,specialpermitisrequiredtouseanalternativefuelthatdoesnothaveasafetystandard.64U.S.NationalCleanHydrogenStrategyandRoadmapTransportationbyRoadFHWA23CFRPart658,924Regulatessizeandweightoftrucksandhighwaysafetywhichincludesbridges,tunnels,andotherassociatedelements.FMCSA49CFRPart356,389,397Motorcarrierroutingrequirements,generalmotorcarriersafetyregulations,andtransportationofhazardousmaterials.FTC16CFRPart306Describesthecertificationandpostingofautomotivefuelratingsincommerce.PHMSA49CFRPart172,173,177,178,180Listsandclassifieshazardousmaterialsfortransportation,andprescribesrequirementsforpapers,markings,labeling,andvehicleplacarding.Providesrequirementsforpreparinghazardousmaterialsforshipment,andinspection,testing,andotherrequirementsfortransportationofhazardousmaterialsviapublichighways(includingtransportationcontainers).TransportationbyWaterwaysPHMSA49CFRPart172,173,176,178,180Listsandclassifieshazardousmaterialsfortransportationandprescribestherequirementsforpapers,markings,labeling,andvehicleplacarding.Providesrequirementsforpreparinghazardousmaterialsforshipment,aswellinspection,testing,andotherrequirementsforcontainers.Requirementsfortransportationbyvessel.USCG33CFRPart154,156and46CFRPart38,150,151,153,154Regulationsfortransferringhazardousmaterialsbackandforthfromavesseltoafacility.TransferofoilorhazardousmaterialonthenavigablewatersorcontiguouszoneoftheU.S.Requirementsfortransportationofliquifiedorcompressedflammablegases,includingincompatibilityofhazardousmaterialsandrulesforcontainers.Regulationsforshipsandvesselscarryingbulkcargo,includingbulkliquifiedgasesascargo,residue,orvapor.Applicationofsomeoftheseauthoritiestohydrogenmayrequireadditionallegislativeorregulatoryaction(e.g.,FERC)65U.S.NationalCleanHydrogenStrategyandRoadmapTable3:ExamplesofregulatoryactivitiesbyU.S.agenciesrelevanttoend-useofhydrogen.End-UseSystemAgencyRegulationSummaryAuxiliaryPowerandAlternativePowerSupplyFAA14CFRPart23,25,27,29SubpartERequirementsforelectricalgeneratingsystemsincludingauxiliaryandbackuppowerforairplanesandrotorcraft.FMCSA49CFRPart390Regulatesadditionalequipmentoncommercialvehiclestoensureitdoesnotreducetheoverallsafetyofthevehicle.FRA49CFRPart229Regulationsforelectricalsystems,generators,protectionfromhazardousgasesfromexhaustandbatteries,andcrashworthinessforlocomotives.USCG46CFRPart111Regulationsforpowersupplysystemsonships.ChemicalandIndustrialUseEPA40CFRPart98Requiresgreenhousegasreportingbyapplicablefacilities,includingrelatedtogeneralstationarycombustionandotherapplicablesourcecategories.OSHA29CFRPart1910Dictatesthesafetyofthestructuralcomponentsandoperationsofgaseousandliquidhydrogenintermsofstorageaswellasdelivery.ElectricityProductionDOE10CFRPart503,504Relatestonewbaseloadpowerplantsincludingtheuseofalternativefuelsasaprimaryenergysource.EPA40CFRPart60AddressesGHGemissionsfromfossilfuel-firedelectricgeneratingunits(EGUs).FERC18CFRPart292Regulationsregardingsmallpowerproductionandcogenerationfacilities.Import/ExportTerminalsUSCG33CFRPart154,156Regulationsforself-propelledvesselsthatcontainbulkliquifiedgasesascargo,cargoresidue,orvapor.TransferofoilorhazardousmaterialsonthenavigablewatersorcontiguouszoneoftheU.S.UseinConsumerandCommercialVehiclesFHWA23CFRPart658,924Regulatesthesizeandweightoftrucksandhighwaysafetywhichincludesbridges,tunnels,andotherassociatedelements.NHTSA49CFR571ProvidesFederalMotorVehicleSafetyStandardsformotorvehiclesandmotorvehicleequipment.66U.S.NationalCleanHydrogenStrategyandRoadmapUseinMaritimeFTA49USCChapter53RequirementsforNationalPublicTransportationSafetyPlanforpublictransportationthatreceivesFederalfunding.USCG46CFRParts24–196Regulationofvesselconstructionforbothpassengerandcargoapplicationsaswellasgeneralfuelrequirementsbasedontheflashpointofthefuel.UseinRailFRA49CFRPart229,238Locomotivesafetydesignandcrashworthinessrequirements,includingsafetyrequirementsforpassengerlocomotives.FTA49CFRPart659,674Providesguidanceforrailfixedguidewaysystemsandtheoversightofsafety,includinghazardmanagementandsafetyandsecurityplansandreview.Mandatesstatesafetyoversightoffixedguidewaypublictransportationsystems.Applicationofsomeoftheseauthoritiestohydrogenmayrequireadditionallegislativeorregulatoryaction(e.g.,FERC)UseinAviationFAA14CFRPart23,25,26,27,29,33Providesrequirementsandairworthinessstandardsforairplanesandrotorcraft.67U.S.DepartmentofEnergyActionsandMilestonesfortheNear-,Mid-,andLong-termFigure40:Thenationalactionplanforcleanhydrogen.68U.S.NationalCleanHydrogenStrategyandRoadmapActionstosupportclean,affordable,andsustainablehydrogenproduction2022-20252026-20292030-2035CleanHydrogenProduction•Assesspathwaysfromlifecycle,sustainability,cost,regional,andequityperspectivestoprioritizestrategies,determinegaps,andinforminterimgoals.•EstablishCleanHydrogenProductionStandard.•Demonstratecleanhydrogenproductiontechnologiesfrommultiplepathways,includingpyrolysis,waste,renewables,andnuclear.•ReducethecostofelectrolyzersatscalethroughRDD&Donmanufacturing,stacks,andBOPcomponents.•ReducethecostofthermalconversiontechnologiesthroughRDD&Donmodulardesignsandprocessintensification.•Developlow-cost,durablemembranesandseparationmaterials.•Identifyopportunitiesforstandardizationofcomponents,reducedependenceoncriticalmaterials,andfosterarobustsupplychain.•Designandconductacceleratedstresstestingtechniquestoassessandimprovedurability.•Publishcasestudiesonpathways,emissions,andcostandupdateGREETcapabilitiesforuser-friendliness,transparency,andadditionalpathwaysinsupportof45V.•Developrigorousdatacollectionandmonitoringframeworkforfuturedeployments.•Identifyneededworkercompetenciesanddevelopconsensus-based,industry-acceptedtrainingcredentialswherepossible.•Promotehigher-educationandapprenticeshipprograms,especiallyindisadvantagedcommunities,fortrainingthecleanhydrogenworkforce,includingonsafety,codes,andstandards.•Promotecareerawarenesseffortstoattractpeopletojointhehydrogenworkforce•Deploycleanhydrogenfromrenewables,nuclear,fossil+CCSatscale.•Enablecleanhydrogenproductionfromelectrolysisat$2/kg.2•Enablemulti-gigawatt-scaledomesticelectrolyzermanufacturingcapacity.•Demonstratecatalystsandcomponentsthatminimizeuseofcriticalmaterialswhileachievingcompetitiveperformanceanddurability.•Optimizeintegrationbetweenelectrolyzersandcleanenergysuppliestoreducecostandimproveefficiencyandresilience.•Advancethemostpromisingconceptsforhydrogenproductioncurrentlyatlabscale,suchasthermochemical,photoelectrochemicalorbiologicalapproaches.•Collectdatafromreal-worlddemonstrationstoinformRDD&Dandcontinueimprovingperformanceanddurability.•Refineandupdatepathwaysassessmentstoensurethemostsustainable,equitable,resilient,andaffordableapproachesaretargeted.•Userigorousanalyses,lessonslearned,bestpractices,andbroadstakeholderfeedbacktoidentifypathwaysforscaleupwithhighestbenefits.Reviewandrefineworkcompetenciesandindustry-acceptedtrainingstandardstomatchindustryneed.•Produceatleast10MMT/yearofcleanhydrogenby2030.•Enablecleanhydrogenproductionat$1/kg3fromdiverseresources.•Demonstrateelectrolysisstacksthatminimizetheuseofcriticalmaterialsandachievetargetedperformanceanddurability.•Demonstratenovel,commerciallyviableapproachestohydrogenproductionleveragingdiversefeedstocks,suchaswastewaterorhigh-temperatureheat,atscale.•Ensureresilientandsustainabledomesticsupplychainsareavailableforallproductionpathwaysemployedandenableindependencefromimports.•Continuetocollectdatafromreal-worlddeploymentstoinformRDD&D,identifyremaininggapsandrefinestrategies.•Applybestpractices,lessonslearned,andrigorousanalyses,includingthroughglobalcollaborationandsustainabilityframeworkstoensurethemostsustainable,equitable,resilient,andaffordableapproachesareadvancedtomaximizebenefits.•Sustainuniversity,communitycollege,anduniontrainingprogramstosupportarobustworkforce.2Modeledcostatscale,meetsBILprovision(Sec.816ofEPACT-2005)$2/kgby2026.3ModeledcostatscaletomeetHydrogenShotgoal.69U.S.NationalCleanHydrogenStrategyandRoadmapActionstosupportsafe,efficient,andreliablecleanhydrogendeliveryandstorageinfrastructure2022-20252026-20292030-2035DeliveryandStorageInfrastructure•Developandupdaterigorousanalyticalmodelsandtoolstoassessdeliveryandstoragepathways,determinegaps,andprioritizestrategies.•Developtechnologiestotightlymonitorandmitigatehydrogenleaksandboil-off.•Assesscompatibilityofpipelineandcomponentmaterialswithhydrogenandhydrogenblendswithnaturalgas.•Advancenovelapproachesforlowcost,highefficiencyhydrogenliquefactionandboil-offmitigation.•Conductdiscoveryanddevelopmentofhydrogencarriermaterialsforuseinbulkstorageanddistribution.•Identifygeologicformationsthatcanbeusedforbulkhydrogenstorage,andassociateddevelopmentandoperatingrequirements.•Developandoptimizedesignsforhydrogeninfrastructureinkeyapplications,suchasindustryandenergystorage.•Developtechnologiesforhighthroughputdispensingofhydrogenforheavy-dutyvehicles.•Developandharmonizefuelingprotocolsforheavy-dutyandoff-roadvehiclesforwhichhydrogenistheoptimalsolution.•AccelerateRDD&Dtoreducethecostofhighpressureandliquidhydrogenstoragetanks,includingcarbonfibercompositevessels.•Establishdatamonitoringandcollectionframeworktoassessupstreamandon-siteemissions.•Validateandrefineanalyses,models,andtoolstoprioritizedeliveryandstoragepathwaysforvariousapplications.•Demonstrateefficientandreliablehydrogenpipelinecompressoroperation.•Quantifylossratesfromgaseousandliquidhydrogeninfrastructuretoinformmitigationrequirementsinlarge-scaledeployments.•Developdesignsforcommercial-scalenovel,highefficiencysystemsforhydrogenliquefaction.•Advancepromisingconceptsforhydrogencarriersanddesignreliable,low-costregeneratorsystems.•Initiateregionalbulkhydrogenstoragedemonstrations,includingundergroundapproaches,andensurelocalandregionalbenefits.•Demonstratenovel,efficient,andlow-costapproachestobulkhydrogendelivery.•Deployscalablehydrogenfuelingstationstosupportearlyfleetmarkets,suchasheavy-dutytrucksandbuses.•Ensuremonitoringsystemsanddatacollectionareinplaceforpotentialhydrogenandotheremissions/releases.•Designsustainableandequitableregionalcleanhydrogennetworksinkeylocationstomaximizebenefits,ensuringenergyandenvironmentaljusticeandequity.•Designnetworksofhydrogeninfrastructureoptimizedforregionalsupplyanddemand,incollaborationwithlocalcommunitiesandstakeholderstomaximizebenefitsandensureenergy,environmental,andequitygoalsareaddressed.•Demonstrateadvancedliquefactionwithdoubletheefficiencyofcurrentconcepts.•Developlongtermstorageplan/strategichydrogenreservetoensureresilienceofsupply.•DeployRegionalCleanHydrogenHubswithadvancedlow-costcleanhydrogenstorageandinfrastructure.•Collectdata,includingemissionsdata,fromdemonstrationsofbulkhydrogendistribution(e.g.,throughpipelinesorcarriers)inreal-worldenvironmentstoinformRDD&Dthatreducescostandimprovesreliability.•ContinuecollectingdatatoinformscaleupofoptimaldeliveryandstoragepathwaysandRDD&D.•Ensureanysafetyorotherbestpracticesrelatedtohydrogeninfrastructurearesharedacrossdiversestakeholderstoenablecontinuousimprovement.•Leverageglobalcollaborationsonhydrogeninfrastructuretoinformlongterminvestmentplansandhydrogenexportsopportunities.70U.S.NationalCleanHydrogenStrategyandRoadmapActionstosupportcleanhydrogenuseandbroadermarketadoption2022-20252026-20292030-2035End-UseandMarketAdoption•Layregulatorygroundworkforlarge-scalecleanhydrogendeploymentsacrossproduction,processing,delivery,storage,andend-use.•Workacrossindustries(e.g.,nuclear,renewables,fossil,CCS,energystorage)toidentifyregulatory,andpolicygaps,andkeystrategiestoaddressthem(e.g.,“DigOnce”approachestoco-locatetransmission,CO2,hydrogen,andotherconduits)tominimizeimpacts.•Developstreamlinedguidanceonhydrogenpipelineandlarge-scaleprojectpermittingwithstakeholderengagementandaddressingenvironmental,energy,andequitypriorities.•Developmarketstructuresandofftakeagreementstoaccelerateprogress.•Initiatetransitiontocleanhydrogenforhard-to-decarbonizeindustrialapplicationsandidentifyspecificlocationsforpotentialscaleup(e.g.,ammonia,refineries,steel).•Advanceefficientend-usetechnologies(fuelcells/otherpowerconversionwithlow/zeroemissions)anddownselectforscaleup.•Completerobustmodelingandimprovedatacollectiontoquantifyclimateimpactsofhydrogenleakage.•Developbestpracticesandguidancetoassesslifecycleemissionsofreal-worlddeploymentsofcleanhydrogenandinform“guaranteesoforigin”andcertificationschemes.•Establishsafety,riskandreliabilitydatamonitoringandcollectionframeworks.•Catalyzelong-term,credit-worthyofftakeincludingfrommorenascentsectorsthatareonthecuspofadoptingcleanhydrogen.•Enableinternationalharmonizationofcodesandstandardsrelatedtohydrogentechnologies.•Addressregulatorychallengestoincreaseelectrolyzeraccesstorenewableandnuclearenergy.•Sharesafetybestpracticesandlessonslearnedfromearlydeploymentsthroughpubliclyaccessibleplatforms.•DeployatleasttwoRegionalCleanHydrogenHubs,demonstratinghydrogenuseinhard-to-decarbonizesectors(e.g.,industryandheavy-dutytransport).•Developnationalguidanceforhydrogenblendinglimits.•Supplycleanhydrogentoproduceatleast3billiongallonsofsustainableaviationfuelsfrombiomassandwastesby2030.•Increasetheefficiencyandcost-effectivenessofrecoveryandrecyclingofrawmaterialsfromelectrolyzers,fuelcells,andothercomponentsacrossthehydrogenvaluechaintoensureindependencefromforeignimports.•Collectandanalyzesafety,risk,andreliabilitydatatodevelopearlyinsightsthatcaninfluencefuturedeployments.•Developmarketstructuresandregulatoryguidancetoenablecleanhydrogenexports.•Utilizelessonslearnedfromlarge-scaledeploymentstoidentifyprioritysectorsforfuturegrowthwithafocusonholisticapproachesthatsupportthemostefficient,affordable,andclimate-alignedgoalsthatmaximizepublichealthsafetyandtheenvironment.•Demonstrateandquantifythebenefitsofhydrogeninenablingtheresilienceoffuturecleanenergysystemsandaddressingdisastermitigation(e.g.,microgrids,cybersecurity,remotecommunities).•Demonstrateultra-low-NOxturbineoperationandlow-PGMfuelcelloperationon100%hydrogenforpowergenerationby2030.•LaunchatleastoneRegionalCleanHydrogenHubdemonstratinghydrogenuseinenergystorageforacleangridandquantifyopportunitiesforhydrogentosupportachievingacarbonpollutionfreegridby2035includingregionalfactors.•Continuecollectingandanalyzingsafety,riskandreliabilitydataanddevelopinginsightsthatenablecontinuousimprovement.71U.S.NationalCleanHydrogenStrategyandRoadmapActionstoenableasafe,affordable,andsustainablecleanhydrogeneconomyandensureenergyjustice2022-20252026-20292030-2035EnablersandEnvironmentalandEnergyJustice•Developandimplementframeworksforbroadandinclusivecommunityengagement,includingfromenvironmentalandenergyjustice,disadvantagedcommunities,Tribes,Tribalorganizationslaborunions,industry,academia,nationallaboratories,andFederal,state,andlocalgovernmentstoensurebroadparticipationandholdlisteningsessionstogatherstakeholderfeedback.•IncorporateCommunityBenefitPlansintofundingopportunitiesrequiringapplicantstodescribeandcommittocommunityandlaborengagement,investingincreatinggoodjobs,furtheringdiversity,equity,inclusionandaccessibilityandmeetingJustice40goals.•Identifymetricsfordiversity,equity,inclusion,accessibility,andotherkeypriorities,forteamsandorganizations,andgeographical/communitylocationsforFederallyfundeddemonstrations.•Launchtoolsandplatforms(e.g.,H2Matchmaker)tofacilitatepartnerships,inclusion,andmarketsuccess.•Developretrainingprogramsforworkers(e.g.,fromfossilindustries),enablingbothnear-andlong-termgoodpayingjobs.•Developrecruitmentandcareerprogramsforstudentsfromunderrepresentedcommunitiesandfosterdiversity,equity,inclusion,andaccessibility.•DevelopandimplementsustainabilityframeworksandNEPAbestpractices.•Developeducationresourcestosupporthubcommunityoutreachandengagementstrategies.•Improvedatacollectiononregionalpriorities(e.g.,criteriapollution)andidentifyapplicationstoinformcleanhydrogendeployments.•Refineandcontinuouslyimprovecommunityengagementandinclusionandapplylessonslearned.•Fosterpublic-privatepartnershipstoenableinclusionandaccelerateprogress.•DevelopandimplementcommunitybenefitagreementswithdisadvantagedcommunitiesinHubregions.•Launchdeploymentsofhydrogentechnologiesthatreducecriteriapollutioninnonattainmentareasandprovideresilience,jobs,andotherkeybenefitsforlocalanddisadvantagedcommunities.•Conductimpactassessmentsofhydrogentechnologiesonregionalwatersupplyandotherregionalresources.•Identifyandapplylessonslearnedforenvironmentalandriskassessments,includingthroughglobalandregionalcollaborations.•Workwithunionstodevelopandexpandregisteredapprenticeshipprogramsforhydrogentechnologies.•Establisheducationandengagementpathwaysforfirstrespondersandcodeofficials.•UtilizeH2Toolsandotherplatformstosharebestpracticesandlessonslearned.•Quantifybenefitsfromdeploymentsandidentifyadditionalpolicyorprogramprioritiestoaccelerateprogressintargeted,no-regretsareas.•Deploymanufacturingfacilitiesforcleanhydrogentechnologiesindisadvantagedcommunitiesforlocalandregionalbenefits.•Evaluatethetechno-socio-economicimpactofRegionalCleanHydrogenHubs.•Developandrefinemarketstructurestodistributecostsandbenefitsofnewtechnologiesequitably.•Ensureadaptation,cyber,resilience,andothermitigationapproachesareincludedinstrategicplansforscaleup.•Updateandrefinesustainabilityframeworksandbestpracticestoinformfuturedeploymentsofhydrogen.•LeverageglobalcollaborationsandinitiativestomaximizesuccessacrosstheRDD&Dpipelineandensuringanequitablecleanenergytransition.72U.S.DepartmentofEnergyPhasesofCleanHydrogenDevelopmentFigure41:Cleanhydrogenwillbedevelopedinwaves,basedontherelativeattractivenessineachend-useapplication.ArrowsdepictthetimeframewhenhydrogenisexpectedtobecompetitivewithincumbenttechnologiesatscalethroughouttheU.S.Themarketpenetrationofhydrogentechnologieswilldependonnumerousfactorsincludingtechnicalmaturity,cost,infrastructureavailability,manufacturingandsupplychaincapacities,thecostofotherlow-carbonsolutions,thepolicyandregulatorylandscape,regionalandstateinitiatives,industrymomentumandcommitments,andunlockingprivatecapitalandinvestment.Basedontwokeyfactors—estimatedbreak-evenandtherelativeattractivenessofhydrogenasadecarbonizationsolution—aswellasstakeholderinput,thefederalgovernmentenvisionsthreeapplicationadoptionphasesor“waves”forcleanhydrogenuseintheUnitedStates.Figure41depictshowpotentialmarketswillevolveintheU.S.andrampupintheearly,mid,andlongterm.Therelativeplacementofend-useapplicationsineachphaseisbasedonarangeofquantitativeandqualitativefactorsandwillbeupdatedovertimeastheindustryandpolicylandscapeevolves.FirstWaveApplicationsofcleanhydrogeninthefirstwavewillbejumpstartedbyexistingmarketsthathavefewalternativestocleanhydrogenfordecarbonizationandwherethereisaccesstohydrogenandcompatibleenduses.Thisincludesexistingrefiningandammoniaproductionplants.Industrialclustersthatco-locatelargescaleproductionwithend-useforsuchapplicationscanhelpdrivedowncostsandcreatetheinfrastructurethatcouldbeleveragedforothermarketsinsubsequentphases.•Forkliftsandothermaterialhandlingequipmentinwarehouses,ports,andotherindustrialsiteshavehighutilization,predictablerefuelinglocationsandaneedforfastrefueling.TheU.S.GovernmenthasalreadycatalyzedthisnicheapplicationintheUnitedStates,enablingthousandsofsystemsinthemarketandanascentinfrastructure.•Refineriesrepresentthelargesthydrogenmarkettodayandhavenoalternativeforcrackingheavycrudeoilandfordesulfurization.Switchingtotheuseofcleanhydrogenwillcreatedemandintheneartermandimmediatelyreduceemissions.•Transitbusescouldbeanattractiveusecase,particularlyinregionsthatrequirelong-distanceoperationandhighuptimesandfortransitagencieswithlargebusfleetswhereindividual73U.S.NationalCleanHydrogenStrategyandRoadmapbatteryelectricvehiclechargingmaybechallenging.•Long-haulheavy-dutytruckshavehighutilization,highenergyrequirements,andneedtorefuelquickly.Togetherwithmedium-dutyvehicles,theyproduceabout20percentoftransportation-sectorgreenhousegasemissionsintheUnitedStates.195•Heavymachineryinmining,constructionandagriculturecouldbenefitfromfuelcellpropulsion,sincetheyhavehighpowerrequirements,needtoberefueledquickly,andmayneedtooperatefarfrompowergrids.Theseapplicationsrequirelargevolumesofhydrogenandwillcreatedemand.•Ammoniaproductionusescarbon-intensivehydrogenasafeedstocktodaycanbereplacedwithcleanhydrogenwithoutretrofittingplants.Asthesecondlargestcaptivemarketrequiringhydrogenfollowingrefining,ammoniacanalsoofferstabledemandforcleanhydrogen.Bysupportingdemonstrationsandinfrastructureformanyoftheabovemarkets,federalagenciescanenablehighvolumesofhydrogeninlimitedregionsandprovidetangiblebenefitstodisadvantagedcommunitiesorworkersthatwouldotherwisebeexposedtodieselexhaustandotherpollutants.SecondWaveApplicationsinthesecondwaveincludeusecaseswherecleanhydrogenoffersagrowingeconomicvalueproposition,supportedbycommitmentsbyindustryandpolicymomentum.Thisphaseincludesabroaderrangeoftransportationusecasesandwidenstoincludegreateruseofindustrialfuelandfeedstock.Afewexamplesofadditionalapplicationsbeyondthoseinthefirstwaveinclude:•Medium-dutytruckspoweredbyhydrogenfuelcellsshouldbecomeincreasinglyavailableatscaleasheavy-dutytransportleadsthewayinexpandinghydrogendistributionandrefuelinginfrastructure.•Regionalferriespoweredbyfuelcells,whichcouldtransportpeopleorgoodsovershortdistances,arelikelytobecomecost-competitivewithinternalcombustionenginesashydrogenandfuelcellcostsdecline.•Certainindustrialchemicalproduction,suchasintheplasticsindustry,requireshigh-temperatureheatthatisdifficulttoachievewithelectricity,orrelyonhydrogenfeedstockfromfossilsourcestoday.Thesesectorscouldbedecarbonizedusingcleanhydrogenforheatgeneration,andasafeedstock.•Steelproductioncandecarbonizewithcleanhydrogenwhenappliedtoironore-basedsteelproductionthatrequirescarbon-freereductantsandhightemperatures,whereelectrolyticproductionwouldnotyetbeviable.•Energystorage&powergenerationcantransitiontogasturbinesfueledwithmixturesofhydrogenandnaturalgasfornear-termemissionreductionsinfossilassets.Purehydrogencanalsobeusedastechnologiesbecomeavailablethatproducelownitrogenoxides.Fuelcellscanalsobeusedasapowerconversiontechnology.Cleanhydrogencanplayakeyroleinseasonalstoragetodecarbonizethegridandreducefossil-basedgeneration.•Aviationcantransitiontosustainablefuelsthatareproducedusingcleanhydrogenandbiomassandwastefeedstocks,contributingtotheBiden-HarrisAdministrationgoalof3billiongallonsofsustainableaviationfuel.114Theproductionofcleanhydrogenatscalewillalsolaythegroundworktoproducepower-to-liquidsinthelongerterm.Industryfeedbacksuggestcertainmarketsegmentscouldadditionallyusehydrogendirectly,thoughcryogenicstoragemayberequiredduetoenergydensityrequirements.ThirdWaveApplicationsinthethirdwavewillbecomecompetitiveascleanhydrogenproductionscalessignificantlyandascostsdeclineandinfrastructurebecomesavailable.Forexample:•Backuppower&stationarypowerfromfuelcellscanreplacedieselgeneratorsinprovidingresiliencetocritical24/7facilitiessuchashospitalsanddatacenters,alsoofferingadvantagesto74U.S.NationalCleanHydrogenStrategyandRoadmapdisadvantagedcommunitiesandimprovingairquality.Backuppowerisdistinctfromenergystorageasitsroleistoprovideresilienceforasingularcustomerormicrogrid,whereasenergystoragesupportsthemacrogrid.•Methanolproducedwithcleanhydrogencanalsobeuseddirectlyasafuelorfuelsupplement,forcontainerships,rail,orothermaritimeapplications,andasanenergycarrier.•Containershipscarryabout90percentofglobaltradebyvolume,producingabout3percentofglobalcarbonemissionsandalargershareofsulfurdioxideemissions.196Potentialalternativesduringthethirdwaveincludecleanammonia,cleanmethanol,andliquifiedcleanhydrogen.•CementcanusecleanhydrogentodecreasedirectCO2emissionswhereelectrificationisnotanoptionduetohighheatrequirements.•Blendingwithexistingnaturalgasnetworkscansupporttargeteddecarbonizationofhigh-temperatureheatingsystems,primarilyintheindustrialsectorwherehightemperaturesareneededforcertainsectors,suchaschemicals.Whilethisapplicationcanstartevenduringthefirstwave,costsmustdeclineconsiderablytobeeconomicallyviable.Thephasesofcleanhydrogendeploymentarehighlydependentonthedevelopmentoftechnology,research,andsupportivepolicystructures.However,concentratingeffortsonsectorsthataremorecommerciallyviable,lackdecarbonizationalternatives,andenjoyindustrymomentumwillincreasetheimpactofpublicinvestments.SystemsAnalysisWillContinuetoInformtheU.S.NationalCleanHydrogenStrategyandActionsRobustandtransparentanalysisandmodelingeffortscompletedthroughcollaborationsbetweennationallaboratories,industry,andacademiawillcontinuetoinformpriorities,milestones,andactionstoadvancecleanhydrogendeploymentinprioritysectors.Overthepastseveraldecades,thefederalgovernment,includingDOE,hasfundedthedevelopmentoftools,suchasthoselistedinFigure42,toevaluatetheroleofhydrogeninindustry,transportation,andtheenergysector.Datafromreal-worlddeploymentsinthecomingyearswillbeusedtocontinuallyrefinethesetoolstoensuretheyreflectstatusoftechnologycostandperformance.AnalysistoolsthatDOEhasfundedtodatecutacrossmanydifferentaspectsofhydrogenmarkets.Foundationaltoolsevaluatethecostandperformanceofindividualtechnologies,suchashydrogenproductionorinfrastructureequipment.Technologyassessmentscanthenbeusedinsupplychainanalysesandtocharacterizethetotalcostandemissionsofanapplicationinaregion.Supplychainanalysestheninformmarketadoptionanalysis—forexample,estimatingthevaluepropositionofhydrogenenergystorageandsalesoffuelcelltrucks.AllanalysesareusedtoinformRDD&Dactivitiesandreal-worlddatafromtechnicaldemonstrationsarefedbackintofoundationalmodelstoimproveassessmentsinthefuture.Ongoinggovernment-fundedandgovernment-ledanalysesareidentifyingoptimalpathwaystoachievenet-zeroemissionseconomy-wideby2050,usingcross-sectortoolssuchastheGlobalChangeAnalysisModel(GCAM)andtheNationalEnergyModelingSystem(NEMS).DOEiscurrentlyfundingupdatestothesetoolstorepresentdiversehydrogenproduction,distribution,andutilizationmethodsthatareexpectedtobedeployableatscaleinthenear-term.Cross-officeanalysescompletedusingthesemodelsmayinformstrategyinfutureversionsofthisroadmap.Incollaborationwithinternationalpartnerships,suchasMissionInnovation,DOEisalsofundingthedevelopmentofmetricsandcriteriathatcanbeusedtoascertaintheimpactsofhydrogendeploymentsonsustainability,suchasonwaterconsumption,laboropportunities,airqualityimprovementsandmore.DOE’ssolicitationforRegionalCleanHydrogenHubsalsoevaluatesapplicantsbasedonenvironmentaljusticecriteria,suchascommunitybenefits.Thesecriteriaandimpactswillbefurtherdescribedinfutureversionsoftheroadmap.75U.S.DepartmentofEnergyFigure42:Asuiteoftoolsandmodelssupportsystemsanalysisworkfromfundamentalmodelvalidationandtechno-economicwork,toplanning,optimization,andintegratedanalysis.ADOPT:AutomotiveDeploymentOptionsProjectionTool;Autonomie:(avehiclesystemsimulationtool);BEAM:Behavior,Energy,Autonomy,andMobility;FASTSim:FutureAutomotiveSystemsTechnologySimulator;GCAM:GlobalChangeAssessmentModel;GREET:Greenhousegases,regulatedemissions,andenergyuseinTechnologiesModel;H2A:TheHydrogenAnalysisProject;H2FAST:HydrogenFinancialAnalysisScenarioTool;HDRSAM:Heavy-DutyRefuelingStationAnalysisModel;HDSAM:HydrogenDeliveryScenarioAnalysisModel;HRSAM:HydrogenRefuelingStationAnalysisModel;LAVE-Trans:Light-DutyAlternativeVehicleEnergyTransitions;PLEXOS:(anintegratedenergymodel);POLARIS:(apredictivetransportationsystemmodel);ReEDS:RegionalEnergyDeploymentSystem;REMI:RegionalEconomicModels,Inc.;RODeO:RevenueOperationandDeviceOptimizationModel;SERA:ScenarioEvaluationandRegionalizationAnalysis;StoreFAST:StorageFinancialAnalysisScenarioTool;VISION:(atransportationenergyusepredictionmodel)76U.S.NationalCleanHydrogenStrategyandRoadmapCollaborationandCoordinationEfficientandeffectivecollaborationandcoordinationarevitaltoimplementtheU.S.nationalcleanhydrogenstrategy.Agencieshavealreadybeencoordinatingwitheachother,andwithindustry,states,andnumerousstakeholderstoexecuteonhydrogenrelatedactivities.197Agencieswillalsorampupengagementacrosstheentirespectrumofstakeholdersfromindustryandacademiatolaborunions,disadvantagedcommunities,andTribalcommunities.Severalopportunitiesexistacrossagencies,buildingonactivitiesunderwayovermorethanadecade198toaccelerateprogressalignedwiththeNationalCleanHydrogenStrategyandRoadmap.Examplesincludethefollowing,thoughmanyotherscanplayaroleasthecleanhydrogeneconomydevelops.TheU.S.willalsocontinuetoworkacrosscountriestoenableanaffordable,clean,andsustainableglobalhydrogeneconomyandtoachievetheU.S.Government’scollectiveclimategoals.MultiplegovernmentrepresentativesdiscussedapotentialframeworkforglobalhydrogencoordinationatthelaunchoftheHydrogenBreakthroughAgendainGlasgowatCOP26inNovember2021.Suchacoordinationframeworkwouldhelpunifyvariousorganizationsandinitiatives199toavoidduplication,leverageresources,andacceleratethesuccessfulscaleupofcleanhydrogentechnologies.TheU.S.GovernmentwillworkwiththeUKandothercountriestostrengthencoordinationandwillcontinuetoplayakeyroleinseveralmulti-lateralandbi-lateralhydrogenpartnerships.Table4showsexamplesofpreliminaryfeedbackfromover30countriesengagedincleanhydrogeninitiatives,developedthroughtheHydrogenBreakthroughAgenda.Asspecificactivitiesandmutuallyagreeduponprioritiesaredefined,theU.S.Governmentwillcontinuetoplayaleadershiproletofostercollaboration,shareinformation,andaccelerateactiontowardstangibleoutcomesandsuccesses.Table4:Emergingprioritiesforstrengthenedglobalcollaboration.DemandCreation&ManagementFinance&InvestmentResearch&InnovationRegulation,Standards&CertificationDemandsignalsalongwithmatchingsupplytoavoidstrandedassetsareanimportantdriverofinvestmentincleanhydrogeninfrastructureandwillbuildinvestorconfidence.Someactivityexistsbutcoordinationshouldbestrengthenedatsufficientscale,visibility,andbreadth.ScopetoexplorehowpublicandprivatesectorAccesstoappropriatefinanceiscritical.Investmentsarestartingtobemadebutscaleisstillsmallrelativetoneeds.Developedcountriesfacechallengesbutparticularlyacutefordevelopingworld.Someactivityexistsbutnotwidelycoordinated,visibleorwithsufficientscaleandbreadth.Research&Innovationunderpinsprogressacrosshydrogensystems—helpingreducecosts,improveperformance,addresssupplychains,andbroadenapplicability.Significantactivityexistsdrivingactioninmultiplecountries.Scopeexiststoaccelerateinnovationtoreducecostandincreasescale—particularlyforpilotanddemoprojectsRegulatoryframeworksincludinginternationallyacceptedandimplementedstandards&certificationschemesacrossthehydrogenvaluechainareessentialenablersofproduction,trade,anduse.Significantworkisunderwaybyawiderangeofactorsonkeyelements.Activitiesarenotyetcloselycoordinated,andgapsareunclear.77U.S.NationalCleanHydrogenStrategyandRoadmapactorscanstrengthendemandsignalstoensureofftakersandsupplychainstoreducerisk.Scopeexiststoincreasepublicandprivatesectorinvestment,particularlyenablinginvestmentandcoordinationwithdevelopingcountries.andtoincludemorecountries.Scopeexiststobuildonexistinginitiativestoincreasediversityandscalabilityofdemoprojects,involvemorecountriesandsharelearningsmorewidelytoguideRDD&D.Ensuringrapidandwideadoptionremainschallenging.Scopeexiststoconnectexistingworkacrossentities,identifyandaddressgapsandelevateandbroadenpoliticalsupport.TheU.S.NationalCleanHydrogenStrategyandRoadmapalsosupportsrecommendationsoutlinedintheIEAFutureofHydrogenreportreleasedatthe2019G20Summit:2001.“Establisharoleforhydrogeninlong-termenergystrategies…Keysectorsincluderefining,chemicals,ironandsteel,freightandlong-distancetransport,buildings,andpowergenerationandstorage.”2.“Stimulatecommercialdemandforcleanhydrogen.”ThisincludesscalingupbothhydrogenfromfossilfuelswithCCSandhydrogen(usingrenewables)aswellaswaterelectrolysisusingnuclearresources.3.“Addressinvestmentrisksoffirstmovers.”Newapplicationsforhydrogen,aswellascleanhydrogensupplyandinfrastructureprojectscanbesupportedthroughtoolssuchasloanguaranteestoreducerisk.4.“SupportR&Dtobringdowncosts.Alongsidecostreductionsfromeconomiesofscale,R&Discrucialtolowercostsandimproveperformance.”5.“Eliminateunnecessaryregulatorybarriersandharmonizestandards.Projectdevelopersfacechallengeswhereregulationsandpermitrequirementsareunclear.”Addressingsafety,codesandstandardsisnecessaryforaharmonizedglobalsupplychain.6.“Engageinternationallyandtrackprogress.”Enhancedinternationalco-operationisessentialandsupportedbyanumberorpartnerships.7.“Focusonfourkeyopportunitiestofurtherincreasemomentumoverthenextdecade.”Theseincludeenablingindustrialportsashubsforhydrogenatscale;usingexistinggasinfrastructuretospurnewcleanhydrogensupplies;supportingtransportationfleets,freight,andcorridor;andenablinghydrogenshippingtojumpstartinternationalhydrogentrade.U.S.GovernmentactivitiesasoutlinedinthisdocumentarealsoalignedwiththeGlobalActionAgendaasdevelopedthroughtheHydrogenEnergyMinisterialinSeptember2019.Keypillarsinclude:2011.“Collaborationontechnologiesandcoordinationontheharmonizationofregulation,codesandstandards;”2.“Promotionofinformationsharinginternationaljointresearchanddevelopmentemphasizinghydrogensafetyandinfrastructuresupplychains;”3.“Studyandevaluationofhydrogen’spotentialacrosssectorsincludingitspotentialforreducingbothcarbondioxideemissionsandotherpollutants;and”4.“Communication,EducationandOutreach”DOEhasalreadyplayedastrongleadershiproleinconveningandsupportingitscounterpartsinmultiplenations.DOEhaslongbeenrecognizedasinstrumentalinacceleratingprogressthroughtangibleoutcomesasaco-leadforthehydrogeninitiativesundertheauspicesofboththeCleanEnergyMinisterialandMissionInnovation,asformerchairandcurrentvicechairoftheIPHE,andasastrongcontributortotheIEA’shydrogenandfuelcellprograms.78U.S.NationalCleanHydrogenStrategyandRoadmapConcreteactionsincludelaunchingDOE’sH2TwinCitiesinitiative202tofosterpartnershipsbetweencitiesacrosscontinentsdeployinghydrogentechnologies,withemphasisonequityandjustice,co-leadinginitiativestofacilitateinternationaltradeanddevelopacommonmethodologyforassessingthecarbonfootprintofhydrogen,harmonizingcodesandstandards,andlaunchinganearlycareernetworkthatisrunentirelybystudentsandearlycareerprofessionalsfrommorethan34countries.TheU.S.Governmentwillcontinuetoadvancetheseandadditionalconcreteactionsasglobalmomentumbuildsforcleanhydrogen.Insummary,throughthecohesiveandcoordinatedeffortsbythefederalgovernment,alongwithstates,industry,NationalLaboratories,academia,andthroughextensivestakeholderinputandcollaboration,implementationofthisplanwillcontributetoachievingthevisionsetforthforhydrogenintheUnitedStates:Affordablecleanhydrogenforanet-zerocarbonfutureandasustainable,resilient,andequitableeconomy.79U.S.DepartmentofEnergyConclusionCleanhydrogen,asshownintheBiden-HarrisAdministration’sLong-TermStrategyoftheUnitedStates,isanimportantelementoftheNation’spathtodecarbonization.Thoughmuchremainsuncertain,thepotentialforhydrogenisclear.Focusedinvestmentandactioninthenear,mid,andlong-termwilllaythefoundationforbroadercleanhydrogenadoption,drivedowncost,andincreasescaleinasustainableandholisticmanner.CleanhydrogenacrosstheentireRDD&Dspectrum,catalyzedbytheBipartisanInfrastructureLawandtheInflationReductionAct,willbothenabledecarbonizationofhard-to-abatesectorsandcreateandpreservegood-payingjobs,provideenvironmentalandenergyjusticebenefits,andcreateenergyindependenceandexportopportunitiesfortheUnitedStates.Governmentactionscansupportandcatalyzeinvestmentacrossthevaluechainforcleanhydrogen.Federalagencies,throughawholeofgovernmentapproach,arecommittedtoworkingwithpartnersinindustry,academia,nationallaboratories,localandTribalcommunities,andmoretoadvancethistransitionandwillleverageabroadarrayoftoolsincludingpolicies,financialassistance,loans,apprenticeshipprograms,andstakeholderengagement,toaccelerateprogress.Furtherdetailsandappendiceswillcontinuetobedevelopedtoensurethemostuptodateinformationisavailable203andDOEwillupdatethisdocumentatleasteverythreeyears,asrequired.Througheffectivecollaborationandwiththerightstrategiesandimplementationplans,theUnitedStatescanandmustsucceedinthedevelopmentofasustainable,resilient,andequitablecleanhydrogeneconomy.80U.S.DepartmentofEnergyAcknowledgmentsDOEwasrequiredtodevelopthisdocumentpertheBIL(Pub.L.No.117-28,sec.40314,§814(codifiedas42U.S.C.16161b(2021))butwouldliketoacknowledgemultipleFederalagenciesfortheirinputandguidance,particularlytheHydrogenInteragencyWorkingGroupwhichwasestablishedbytheEnergyPolicyActof2005andincludesmorethan10Federalagencies.DOEappreciatesearlyengagementbytheFuelCellandHydrogenEnergyAssociation(FCHEA)anditsmembersandFCHEA’shostingoflisteningsessionsthatincludedthefollowingorganizations:CaliforniaFuelCellPartnership;CaliforniaHydrogenBusinessCouncil;CleanHydrogenFutureCoalition;ColoradoHydrogenNetwork;ConnecticutHydrogenandFuelCellCoalition;GreenHydrogenCoalition;HawaiiTechnologyDevelopmentCorp;HydrogenForward;MassachusettsHydrogenCoalition;NationalFuelCellResearchCenter,UniversityofCalifornia(Irvine);NewJerseyFuelCellCoalition;OhioFuelCellCoalition;RenewableHydrogenAlliance;SoutheastHydrogenEnergyAlliance;andUSHydrogenAlliance.DOEisalsogratefulforvariouslisteningsessionsandpresentationsessionsincludingwithTribalcommunities,laborunions,NASEO,andenvironmentalandenergyjusticestakeholders.DOEparticularlyrecognizesthevaluableinputfromtheenvironmentalcommunitythroughlisteningsessionswiththeNaturalResourcesDefenseCouncil,RockyMountainInstitute,EnvironmentalDefenseFund,SierraClub,Earthjustice,andUnionofConcernedScientists.Inadditiontothethankingtheabovestakeholders,theprimaryauthorsofthisreport—SunitaSatyapal,NehaRustagi,TomasGreen,MarcMelaina,MichaelPenev,andMariyaKoleva—wouldliketoacknowledgemultipleDOEofficesincluding:theHydrogenandFuelCellTechnologiesOffice(HFTO)andtheOfficesofEnergyEfficiencyandRenewableEnergy(acrossthepillarsofRenewables,SustainableTransportation,andEnergyEfficiency),FossilEnergyandCarbonManagement,NuclearEnergy,Science,TechnologyTransitions,Policy,CleanEnergyDemonstrations,IndianEnergyPolicyandPrograms,EconomicImpactandDiversity,EnergyJobs,Electricity,CongressionalandIntergovernmentalAffairs,InternationalAffairs,LoanProgramsOffice,andAdvancedResearchProjectsAgency–Energy.MultiplesessionswereconvenedthroughDOE’sScienceandEnergyTechnologyTeamtocoordinateacrossthespectrumofRDD&D.AuthorsofDOE’sReport,PathwaystoCommercialLiftoff:CleanHydrogen,particularlyHannahMurdochandJasonMunsterprovidedvaluableinputandassessments.TechnicalandprogrammanagersatfifteenDOENationalLabsengagedinhydrogenRDD&Dprovidedinputforconcreteactionsandmilestones.DOEisparticularlygratefultoMcKinseywhowasalsoengagedindevelopingtheU.S.industryhydrogenroadmapin2019;forH2@ScaleanalysesledbyMarkRuth,MarkChung,andMichaelPenevattheNationalRenewableEnergyLaboratoryandAmgadElgowainyatArgonneNationalLaboratory;andforemissionsanalysisledbyAmgadElgowainyatArgonneNationalLaboratory.Themulti-agencyregulatorygapanalysisfundedbyHFTOwasconductedbySandiaNationalLaboratories.DOEisalsogratefulforstakeholderfeedbackthroughRequestsforInformationissuedonFebruary15,2022,ontheBILRegionalCleanHydrogenHub,electrolyzer,andcleanhydrogenmanufacturingprovisions.ThedraftdocumentwasreleasedinSeptember2022forpubliccommentandrevisedforpublicationinJune2023.AsrequiredbytheBIL,thedocumentwillbeupdatedatleasteverythreeyears.81U.S.DepartmentofEnergyGlossaryofAcronymsARRAAmericanRecoveryandReinvestmentActATRAutothermalReformingBILBipartisanInfrastructureLawBOFBasicOxygenFurnacesBOPBalanceofPlantBSEEBureauofSafetyandEnvironmentalEnforcementCCSCarbonCaptureandStorageDOEU.S.DepartmentofEnergyEAFElectricArcFurnacesEOExecutiveOrderEPACT-2005EnergyPolicyActof2005FAAFederalAviationAdministrationFERCFederalEnergyRegulatoryCommissionFHWAFederalHighwayAdministrationFMCSAFederalMotorCarrierSafetyAdministrationFTCFederalTradeCommissionGHGGreenhouseGasGREETGreenhouseGases,RegulatedEmissions,andEnergyUseinTechnologies(model)H2NEWHydrogenfromNext-generationElectrolyzersofWater(consortium)HFTOHydrogenandFuelCellTechnologiesOfficeIEAInternationalEnergyAgencyIIJAInfrastructureInvestmentandJobsActIMOInternationalMaritimeOrganizationIPHEInternationalPartnershipforHydrogenandFuelCellsintheEconomyIRAInflationReductionActLDESLong-DurationEnergyStorageLOHCLiquidOrganicHydrogenCarriersLPOLoanProgramsOfficeMARADMaritimeAdministration(oftheU.S.DepartmentofTransportation)MMTMillionMetricTonnesMWMegawattM2FCTMillionMileFuelCellTruckConsortiumNHTSANationalHighwayTransportationSafetyAdministrationNRELNationalRenewableEnergyLaboratoryOCSOuterContinentalShelfOSHAOccupationalSafetyandHealthAdministrationPEMProtonExchangeMembraneorPolymerElectrolyteMembrane(atypeofelectrolyzerorfuelcell)PGMPlatinumGroupMetalPHMSAPipelineandHazardousMaterialsSafetyAdministrationR&DResearchandDevelopmentRD&DResearch,Development,andDemonstrationRDD&DResearch,Development,Demonstration,AndDeploymentRFIRequestforInformationSAFSustainableAviationFuelSHASTASubsurfaceHydrogenAssessment,Storage,andTechnologyAccelerationSMRSteamMethaneReformingSOECSolidOxideElectrolyzerCellsTCOTotalCostofOwnershipUAVUnmannedAerialVehicleUSCGUnitedStatesCoastGuard21CTP21stCenturyTruckPartnership82U.S.DepartmentofEnergyReferences1Emissionsavingsbasedonrangesofhydrogenproductioncarbonintensities,accountingforhydrogenfossilandcleanelectrolysispathways,aswellashydrogendemandsacrosstransportation,industry,andgridenergystorage.Estimatesofemissionssavingsperunitofhydrogenconsumedacrosspathwayswereapproximately10kgCO2e/kg-H2.EstimatesweredevelopedusingArgonneNationalLaboratory’sGreenhousegases,RegulatedEmissions,andEnergyUseinTechnologiesModel.Source:ArgonneNationalLaboratory,"GREETModel,”ArgonneNationalLaboratory,Argonne,ILhttps://greet.es.anl.gov/.2Emissionsavingsbasedonrangesofhydrogenproductioncarbonintensities,accountingforhydrogenfossilandcleanelectrolysispathways,aswellashydrogendemandsacrosstransportation,industry,andgridenergystorage.Estimatesofemissionssavingsperunitofhydrogenconsumedacrosspathwayswereapproximately10kgCO2e/kg-H2.EstimatesweredevelopedusingArgonneNationalLaboratory’sGreenhousegases,RegulatedEmissions,andEnergyUseinTechnologiesModel.Source:ArgonneNationalLaboratory,"GREETModel,”ArgonneNationalLaboratory,Argonne,IL.https://greet.es.anl.gov/.3U.S.DepartmentofEnergy,“PathwaystoCommercialLiftoff:CleanHydrogen,”March2023.https://liftoff.energy.gov/wp-content/uploads/2023/05/20230320-Liftoff-Clean-H2-vPUB-0329-update.pdf4S.Satyapal.“2022AMRPlenarySession,”U.S.DepartmentofEnergy,Washington,DC,June2022.https://www.hydrogen.energy.gov/pdfs/review22/plenary4_satyapal_2022_o.pdf.5U.S.DepartmentofEnergyHydrogenProgram,“HydrogenShot,”U.S.DepartmentofEnergy,Washington,DC,2021.https://www.energy.gov/eere/fuelcells/hydrogen-shot.6TheStudyTaskForceoftheHydrogenCouncil.“HydrogenScalingUp,”TheHydrogenCouncil,November2017.https://hydrogencouncil.com/wp-content/uploads/2017/11/Hydrogen-scaling-up-Hydrogen-Council.pdf7E.Connelly,A.Elgowainy,andM.Ruth,U.S.DepartmentofEnergyHydrogenProgram,“CurrentHydrogenMarketSize:DomesticandGlobal,”U.S.DepartmentofEnergy,October2019.https://www.hydrogen.energy.gov/pdfs/19002-hydrogen-market-domestic-global.pdf.8Estimatesbasedon“PathwaystoCommercialLiftoff:CleanHydrogen,”https://liftoff.energy.gov/wp-content/uploads/2023/05/20230320-Liftoff-Clean-H2-vPUB-0329-update.pdfandhttps://www.hydrogen.energy.gov/pdfs/20003-h2-production-potential-nuclear-power.pdf9TheIntergovernmentalPanelonClimateChange,“SpecialReport:GlobalWarmingOf1.5ºC:SummaryforPolicyMakers,”TheIntergovernmentalPanelonClimateChange,October2018.CambridgeUniversityPress,Cambridge,UKandNewYork,NY,USA,pp.3-24.https://doi.org/10.1017/9781009157940.00110TheWhiteHouseOfficeofDomesticClimatePolicy,“NationalClimateTaskForce,”TheWhiteHouse,Washington,DC,January2021.https://www.whitehouse.gov/climate/.11TheU.S.DepartmentofStateandtheU.S.ExecutiveOfficeofthePresident,“TheLong-TermStrategyoftheUnitedStates:PathwaystoNet-ZeroGreenhouseGasEmissionsby2050,”TheWhiteHouse,Washington,DC,November2021.https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf.12S.Young,B.Mallory,andG.McCarthy,“ThePathtoAchievingJustice40,”TheWhiteHouse,Washington,DC,July2021.https://www.whitehouse.gov/omb/briefing-room/2021/07/20/the-path-to-achieving-justice40/.13OfficeofEconomicImpactandDiversity,“DOEJustice40CoveredPrograms,”U.S.DepartmentofEnergy,Washington,DC.https://www.energy.gov/diversity/doe-justice40-covered-programs.14InfrastructureInvestmentandJobsAct,Pub.L.No.117-2815InfrastructureInvestmentandJobsAct,Pub.L.No.117-28,sec.40314,§816(codifiedas42U.S.C.16161c(2021)).16InfrastructureInvestmentandJobsAct,Pub.L.No.117-28,sec.40314,§815(codifiedas42U.S.C.16161c(2021)).17InfrastructureInvestmentandJobsAct,Pub.L.No.117-28,sec.40314,§813(codifiedas42U.S.C.16161a(2021)).18U.S.DepartmentofEnergy,“FundingNotice:RegionalCleanHydrogenHubs,”OfficeofCleanEnergyDemonstrations,https://www.energy.gov/oced/funding-notice-regional-clean-hydrogen-hubs.83U.S.NationalCleanHydrogenStrategyandRoadmap19InfrastructureInvestmentandJobsAct,Pub.L.No.117-28,sec.40315,§82(codifiedas42U.S.C.16166(2021)).DraftguidancefortheCleanHydrogenProductionStandardwasreleasedforpubliccommentinSeptemberof2022,andisavailablehere:https://www.hydrogen.energy.gov/pdfs/clean-hydrogen-production-standard.pdf20InfrastructureInvestmentandJobsAct,Pub.L.No.117-28,sec.40314,§814(codifiedas42U.S.C.16161b(2021)).21InflationReductionAct,Pub.L.No.117-169,sec.13204,§45V(codifiedas26U.S.C.45V(2022)).22InflationReductionAct,Pub.L.No.117-169,sec.50142andsec.50143.23InflationReductionAct,Pub.L.No.117-169,sec.50161.24InflationReductionAct,Pub.L.No.117-169,sec.50144(codifiedas42U.S.C.16517).25InflationReductionAct,Pub.L.No.117-169,sec.13501.26InflationReductionAct,Pub.L.No.117-169,sec.13203,§40B(codifiedas26U.S.C.40B(2022)).27InflationReductionAct,Pub.L.No.117-169,sec.13704,§45Z(codifiedas26U.S.C.45Z(2022)).28InflationReductionAct,Pub.L.No.117-169,sec.60102,§133.29U.S.EnvironmentalProtectionAgency,“DevelopmentofGuidanceforZero-EmissionCleanHeavy-DutyVehicles,PortEquipment,andFuelingInfrastructureDeploymentundertheInflationReductionActFundingPrograms,”FederalRegisterVol.88,no.88,(May8,2023):page29666-70.https://www.regulations.gov/document/EPA-HQ-OAR-2023-0216-000130InflationReductionAct,Pub.L.No.117-169,sec.60101,§132.31InflationReductionAct,Pub.L.No.117-169,titleI,sec.13104,§45Q(codifiedas26U.S.C.45Q(2022)).32U.S.DepartmentofEnergyHydrogenProgram,“DepartmentofEnergyHydrogenProgramPlan,"U.S.DepartmentofEnergy,Washington,DC,November2020.https://www.hydrogen.energy.gov/pdfs/hydrogen-program-plan-2020.pdf.33FuelCellandHydrogenEnergyAssociation,“RoadMaptoaUSHydrogenEconomy,”FuelCellandHydrogenenergyAssociation,Washington,DC,2020.https://www.fchea.org/us-hydrogen-study.34ExecutiveOfficeofthePresident,“Exec.OrderNo.14008,TacklingtheClimateCrisisatHomeandAbroad,”FederalRegister,Washington,DC,February2021.https://www.Federalregister.gov/documents/2021/02/01/2021-02177/tackling-the-climate-crisis-at-home-and-abroad35TheU.S.DepartmentofStateandtheU.S.ExecutiveOfficeofthePresident,“TheLong-TermStrategyoftheUnitedStates:PathwaystoNet-ZeroGreenhouseGasEmissionsby2050,”TheWhiteHouse,Washington,DC,November2021.https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf.36U.S.EnergyInformationAdministration,2021AnnualEnergyOutlook,February2021.https://www.eia.gov/outlooks/archive/aeo21/.37U.S.DepartmentofEnergy,“H2@Scale,”HydrogenandFuelCellTechnologiesOffice,https://www.energy.gov/eere/fuelcells/h2scale38U.S.EnvironmentalProtectionAgency,“GreenhouseGasStandardsandGuidelinesforFossilFuel-FiredPowerPlants,”Washington,D.C.May2023.https://www.epa.gov/stationary-sources-air-pollution/greenhouse-gas-standards-and-guidelines-fossil-fuel-fired-power.391)FuelCellsandHydrogenJointUndertaking,“HydrogenRoadmapEurope:ASustainablePathwayforTheEuropeanEnergyTransition,”FuelCellsandHydrogenJointUndertaking,Brussels,Belgium,January2019.https://op.europa.eu/en/publication-detail/-/publication/0817d60d-332f-11e9-8d04-01aa75ed71a1/language-en2)TheEnergyTransitionsCommission,“MakingtheHydrogenEconomyPossible:AcceleratingCleanHydrogeninanElectrifiedEconomy,”TheEnergyTransitionsCommission,April2021;3)TheHydrogenCouncilandMcKinsey&Company,“HydrogenInsights:Aperspectiveonhydrogeninvestment,marketdevelopmentandcostcompetitiveness,”TheHydrogenCouncil,January2021.https://hydrogencouncil.com/wp-content/uploads/2021/02/Hydrogen-Insights-2021-Report.pdf;4)InternationalEnergyAgency,“NetZeroby2050,”InternationalEnergyAgency,Paris,France,May2021.https://www.iea.org/reports/net-zero-by-2050;5)BloombergNewEnergyFinance,“NewEnergyOutlook2021,”BloombergNewEnergyFinance,July2021.https://www.bnef.com/insights/26815;6)InternationalRenewableEnergyAgency,“WorldEnergyTransitionsOutlook:1.5°CPathway,”InternationalRenewableEnergyAgency,84U.S.NationalCleanHydrogenStrategyandRoadmapAbuDhabi,UnitedArabEmirates,June2021.https://irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook.https://energy-transitions.org/wp-content/uploads/2021/04/ETC-Global-Hydrogen-Report.pdf;3)TheHydrogenCouncilandMcKinsey&Company,“HydrogenInsights:Aperspectiveonhydrogeninvestment,marketdevelopmentandcostcompetitiveness,”TheHydrogenCouncil,January2021.https://hydrogencouncil.com/wp-content/uploads/2021/02/Hydrogen-Insights-2021-Report.pdf;4)InternationalEnergyAgency,“NetZeroby2050,”InternationalEnergyAgency,Paris,France,May2021.https://www.iea.org/reports/net-zero-by-2050;5)BloombergNewEnergyFinance,“NewEnergyOutlook2021,”BloombergNewEnergyFinance,July2021.https://www.bnef.com/insights/26815;6)InternationalRenewableEnergyAgency,“WorldEnergyTransitionsOutlook:1.5°CPathway,”InternationalRenewableEnergyAgency,AbuDhabi,UnitedArabEmirates,June2021.https://irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook.Notallsectorsareshownonthefiguregivenlimitationsinreportedresults.Ifsectoralenergydemandwasnotreported,theproportionofenergydemandforhydrogenisnotshown,despitehydrogenbeingconsumedinthatsector.40InternationalEnergyAgency,“GlobalHydrogenReview2022,”InternationalEnergyAgency,Paris,France,2022.https://iea.blob.core.windows.net/assets/c5bc75b1-9e4d-460d-9056-6e8e626a11c4/GlobalHydrogenReview2022.pdf41EstimateassumesthatSMRproduces~10kg-CO2e/kg-H2onaverage(Source:ArgonneNationalLaboratory’sGreenhousegases,RegulatedEmissions,andEnergyUseinTechnologiesmodel,https://greet.es.anl.gov/,andNationalEnergyTechnologyLaboratory“ComparisonofCommercial,State-of-the-art,Fossil-basedHydrogenProductionTechnologies.https://www.netl.doe.gov/projects/files/ComparisonofCommercialStateofArtFossilBasedHydrogenProductionTechnologies_041222.pdf).Thisestimatewasdevelopedwithanassumptionoffugitivemethaneemissionsof~1%,GWPofmethaneof29.8,andthattheU.S.producesabout10millionmetrictonnesofhydrogenperyear(Source:https://www.hydrogen.energy.gov/pdfs/19002-hydrogen-market-domestic-global.pdf).ItisimportanttonotethattheGWPsofGHGsarepublishedperiodicallybytheIntergovernmentalPanelonClimateChange(IPCC),anddependonseveralparameters,suchashowclimatecycleresponsesareaccountedforandthelengthoftheanalysisperiod.AGWPof29.8formethanereflectsa100-yearanalysisperiod,inclusionofclimatecycleresponses,isspecifictofossilmethane,andalignmentwithAR6.AR6isthemostrecentARavailableatthetimethisRoadmapwaspublished.TheFifthAssessmentReportGWPsiscurrentlyutilizedinnationalreportingtotheUNFCCCandarebeingincorporatedintotheU.S.EPA’sGreenhouseGasReportingProgram.42R.Gubler,B.Suresh,H.He,andY.Yamaguchi,“Hydrogen,”ChemicalEconomicsHandbook,IHSMarkit,May2021.https://ihsmarkit.com/products/hydrogen-chemical-economics-handbook.html.43U.S.DRIVE,“HydrogenDeliveryTechnicalTeamRoadmap,”July2017,https://www.energy.gov/eere/vehicles/articles/us-drive-hydrogen-delivery-technical-team-roadmap44M.Graff,“StatementofMr.MichaelJ.GraffChairman&CEO,AmericanAirLiquideHoldingsInc.ExecutiveVicePresident&ExecutiveCommitteeMemberAirLiquideGroupBeforetheCommitteeonEnergyandNaturalResources,”U.S.Senate,Washington,DC,February10,2022.https://www.energy.senate.gov/services/files/C00CE119-046B-4E3C-8C7C-B534B4A1674B.45U.S.DepartmentofEnergy,“DOEAnnouncesFirstLoanGuaranteeforaCleanEnergyProjectinNearlyaDecade,”U.S.DepartmentofEnergy,Washington,DC,June2022.https://www.energy.gov/articles/doe-announces-first-loan-guarantee-clean-energy-project-nearly-decade.46AirProducts“LandmarkU.S.$4.5BillionLouisianaCleanEnergyComplex,”AirProducts,Allentown,PA.https://www.airproducts.com/campaigns/la-blue-hydrogen-project.47AirProducts“AirProductsandAESAnnouncePlanstoInvestApproximately$4BilliontoBuildFirstMega-scaleGreenHydrogenProductionFacilityinTexas,”AirProducts,Allentown,PA.https://www.airproducts.com/company/news-center/2022/12/1208-air-products-and-aes-to-invest-to-build-first-mega-scale-green-hydrogen-facility-in-texas48GeneseeCountyEconomicDevelopmentCenter“PlugPowerisBuildingtheGreenHydrogenEcosystematSTAMP!,”GenesseeCountyEconomicDevelopmentCenter,Batavia,NY.https://www.gcedc.com/wnystamp/projectgateway49V.Arjona,“ElectrolyzerInstallationsintheUnitedStates”U.S.DepartmentofEnergy,Washington,DC,June2023.https://www.hydrogen.energy.gov/pdfs/23003-electrolyzer-installations-united-states.pdf50AdditionalchemicalsnotlistedintheFigure,orderedbyconsumptionrateforhydrogenintheUS,include:oxochemicals,hydrogenatedvegetableoil,aniline,caprolactam,cyclohexane,hydrogenperoxide,adipicacid,toluenediisocyanate,hydrochloricacid,and1,4butanediol.51U.S.DepartmentofEnergyHydrogenandFuelCellTechnologiesOffice,“H2Matchmaker,”U.S.DepartmentofEnergy,Washington,DC.85U.S.NationalCleanHydrogenStrategyandRoadmaphttps://www.energy.gov/eere/fuelcells/h2-matchmaker.52N.Rustagi,“SystemsAnalysisOverview,”U.S.DepartmentofEnergy,Washington,DC,June2022.https://www.hydrogen.energy.gov/pdfs/review22/plenary9_rustagi_2022_o.pdf.53U.S.DepartmentofEnergy’sHydrogenandFuelCellTechnologiesOfficefundedapproximately$40millionthroughARRAforfuelcellforkliftsandbackuppowerunits.First-of-a-kinddemonstrationswereconductedthroughcollaborationwithDOEandDOD’sDefenseLogisticsAgencymorethanadecadeago.Source:P.DevlinandG.Morland,“DOEHydrogenandFuelCellsProgramRecord#18002:IndustryDeployedFuelCellPoweredLiftTrucks,”U.S.DepartmentofEnergy,Washington,DC,May2018.https://www.hydrogen.energy.gov/pdfs/18002_industry_deployed_fc_powered_lift_trucks.pdf.Reportingfromforkliftcompaniesprovidesinformationaboutthenumberoffuelingstationsdeployedforhydrogenforklifts,suchas:54J.Marcinkoski,“HydrogenClass8LongHaulTruckTargets,”U.S.DepartmentofEnergy,October31,2019.https://www.hydrogen.energy.gov/pdfs/19006_hydrogen_class8_long_haul_truck_targets.pdf.55HydrogenShot,electrolysis,andSMRwithCCScostsshownareforreferenceandexclusivelydepictthecostofproduction,notincludinganydownstreamcosts,suchascompression,storage,anddispensing.Willingnesstopayvaluesbasedonnumeroussources,including:1)ForkliftcostsandindustrialheatcostsbasedonHydrogenCouncil“Pathtohydrogencompetitiveness”,January2020.https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf2)TransportationcostsfromLedna,C.,et.al.“DecarbonizingMedium-&Heavy-DutyOn-RoadVehicles:Zero-EmissionVehiclesCostAnalysis”.2022.NationalRenewableEnergyLaboratory.https://www.nrel.gov/docs/fy22osti/82081.pdf2)3)Biofuels,ammonia,chemicals,steel,seasonalstorage,andindustrialheatcostsbasedlargelyonElgowainy,et.al.,“AssessmentofPotentialFutureDemandsforHydrogenintheUnitedStates”.2020ArgonneNationalLaboratory,https://greet.es.anl.gov/publication-us_future_h24)ChemicalscostsadditionallybasedonZang,et.al.,“TechnoeconomicandLifeCycleAnalysisofSyntheticMethanolProductionfromHydrogenandIndustrialByproductCO2”.EnvironmentalScience&Technology202155(8),5248-5257,https://pubs.acs.org/doi/10.1021/acs.est.0c082375)SteelcostsadditionallybasedonpreliminaryanalysisfromArgonneNationalLaboratory,https://www.hydrogen.energy.gov/pdfs/review21/sa174_elgowainy_2021_o.pdf6)Power-to-liquid,orsyntheticfuel,costsadditionallybasedonZang,et.al.“PerformanceandcostanalysisofliquidfuelproductionfromhydrogenandCO2basedontheFischer-Tropschprocess”.JournalofCO2Utilization202146,101459,https://www.sciencedirect.com/science/article/abs/pii/S22129820210002636)IndustrialheatcostsbasedonHydrogenCouncil“Pathtohydrogencompetitiveness”,January2020.Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf(hydrogencouncil.com).56TheNationalRenewableEnergyLaboratory,“TEMPO:TransportationEnergy&MobilityPathwayOptions,”TheNationalRenewableEnergyLaboratory,Golden,CO.https://www.nrel.gov/transportation/tempo-model.html.57In2021,theU.S.DepartmentofEnergy,U.S.DepartmentofTransportation,andU.S.DepartmentofAgricultureadoptedagoalofsupplyingsufficientSAFtomeet100%ofaviationfueldemandin2050,estimatedat35billiongallons.(Source:TheWhiteHouse,“FACTSHEET:BidenAdministrationAdvancestheFutureofSustainableFuelsinAmericanAviation,”9September2021.https://www.whitehouse.gov/briefing-room/statements-releases/2021/09/09/fact-sheet-biden-administration-advances-the-future-of-sustainable-fuels-in-american-aviation/)Whileavarietyofdifferentbiofuelandpower-to-liquidfuelpathwayscouldmeetthissupply,theestimateof4MMT/yearofhydrogenisbasedonpreliminarymodelingfromNRELof11differentbiofuelproductionpathwayswithvaryingendogenousandexogenoushydrogensupplyrequirements.58A.Elgowainy,M.Mintz,U.Lee,T.Stephens,P.Sun,K.Reddi,Y.Zhou,G.Zang,M.Ruth,P.Jadun,E.Connelly,andR.Boardman,“AssessmentofPotentialFutureDemandsforHydrogenintheUnitedStates,”ArgonneNationalLaboratory,Argonne,IL,October2020.https://greet.es.anl.gov/publication-us_future_h2.59S.deJong,K.Antonissen,R.Hoefnagels,etal.,"Life-cycleanalysisofgreenhousegasemissionsfromrenewablejetfuelproduction,"BiotechnologyforBiofuels,March14,2017.https://doi.org/10.1186/s13068-017-0739-760Thelowerendofthisestimateassumesproductionof120MMTsteelperyearin2050,consistentwiththeU.S.DepartmentofEnergy’sIndustrialDecarbonizationRoadmap.(https://www.energy.gov/sites/default/files/2022-09/Industrial%20Decarbonization%20Roadmap.pdf).Thehigherendassumesproductionof130MMTsteelperyeartoenableexportsof8%ofU.S.steelproduction,consistentwithcurrentpractice.Source:InternationalTradeAdministration,“GlobalSteelTradeMonitor–SteelExportsReport:UnitedStates,”InternationalTradeAdministration,Washington,DC,May2020.https://legacy.trade.gov/steel/countries/pdfs/exports-us.pdf.61RangeofestimatesofU.S.methanoldemandarebasedon:1)Lowend:InternationalEnergyAgencyestimateforNorthAmerica(Source:86U.S.NationalCleanHydrogenStrategyandRoadmapInternationalEnergyAgencyandOrganisationforEconomicCo-operationandDevelopment,“TheFutureofPetrochemicalsTowardsmoresustainableplasticsandfertilisers,”InternationalEnergyAgency,France,October2018.https://iea.blob.core.windows.net/assets/bee4ef3a-8876-4566-98cf-7a130c013805/The_Future_of_Petrochemicals.pdf),and2)Highend:GlobalestimatesdevelopedbytheInternationalRenewableEnergyAgency(Source:InternationalRenewableEnergyAgencyandMethanolInstitute,“InnovationOutlook:RenewableMethanol,”InternationalRenewableEnergyAgency,AbuDhabi,UnitedArabEmirates,2021.https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jan/IRENA_Innovation_Renewable_Methanol_2021.pdf),andanassumptionthattheU.S.shareofglobaldemandremainsat~6%(Source:IHSMarkit,“Methanol:ChemicalEconomicsHandbook,”IHSMarkit,March2021.https://ihsmarkit.com/products/methanol-chemical-economics-handbook.html).62Estimatesofhigh-temperatureheatdemandin2050arebasedonDOEIndustrialDecarbonizationRoadmap.(Source:U.S.DepartmentofEnergy,“IndustrialDecarbonizationRoadmap,”September2022.https://www.energy.gov/sites/default/files/2022-09/IndustrialDecarbonizationRoadmap.pdf).63U.S.DepartmentofEnergy,"IEDOFY23Multi-topicFundingOpportunityAnnouncement,”IndustrialEfficiencyandDecarbonizationOffice,https://www.energy.gov/eere/iedo/iedo-fy23-multi-topic-funding-opportunity-announcement641)Lowend:P.Denholm,P.Brown,W.Cole,T.Mai,B.Sergi,M.Brown,P.Jadun,J.Ho,J.Mayernik,C.McMillan,R.Sreenath,ExaminingSupply-SideOptionstoAchieve100%CleanElectricityby2035(2022).NREL/TP-6A40-81644.2)Highend:U.S.DepartmentofEnergySolar2021FuturesStudySource:U.S.DepartmentofEnergySolarEnergyTechnologiesOffice,“SolarFuturesStudy,”U.S.DepartmentofEnergy,Washington,DC,September2021.https://www.energy.gov/eere/solar/solar-futures-study65C.A.McMillan,M.Ruth,“Usingfacility-levelemissionsdatatoestimatethetechnicalpotentialofalternativethermalsourcestomeetindustrialheatdemand,”AppliedEnergy,Volume239,Pages1077-1090,February2019.https://doi.org/10.1016/j.apenergy.2019.01.077.66Studiesusedtodevelopestimatesofenergystorageincluded:1)Lowestbound,fromPrincetonNet-ZeroAmerica(Source:NetZeroAmerica“PotentialPathways,Infrastructure,andImpacts,”PrincetonUniversity,December2020.https://netzeroamerica.princeton.edu/?explorer=year&state=national&table=2020&limit=200),2)LowerendofcorerangeisfromtheNationalRenewableEnergyLaboratory(Denholm,Paul,PatrickBrown,WesleyCole,etal.,“ExaminingSupply-SideOptionstoAchieve100%CleanElectricityby2035,”NationalRenewableEnergyLaboratory,2022.https://www.nrel.gov/analysis/100-percent-clean-electricity-by-2035-study.html)3)HigherendofcorerangeandupperboundbasedonDOESolarFuturesStudy(U.S.DepartmentofEnergySolar2021FuturesStudySource:U.S.DepartmentofEnergySolarEnergyTechnologiesOffice,“SolarFuturesStudy,”U.S.DepartmentofEnergy,Washington,DC,September2021.https://www.energy.gov/eere/solar/solar-futures-study.)67S.Satyapal,“TestimonyofDr.SunitaSatyapalDirectorforaHearingonHydrogen,”U.S.SenateEnergyandNaturalResourcesCommittee,February2022.https://www.energy.senate.gov/services/files/FE1C53B0-3925-46E3-B1D3-B8E2C0DD92B6.68S.Satyapal,“High-levelRecapandMentiQuestionsResults,”U.S.DepartmentofEnergyHydrogenShotSummit,Sept1,2021.https://www.energy.gov/sites/default/files/2021-09/h2-shot-summit-closing-plenary-recap.pdf.69S.Satyapal,J.Litynski,L.Horton,“Overview,”U.S.DepartmentofEnergyHydrogenShotSummit,Sept1,2021.https://www.energy.gov/sites/default/files/2021-09/h2-shot-summit-plenary-doe-overview.pdf.70CaliforniaFuelCellPartnership,“Costtorefill,”https://cafcp.org/content/cost-refill.71S.Satyapal,“2021AMRPlenarySession,”U.S.DepartmentofEnergy,June2021.https://www.energy.gov/sites/default/files/2021-06/hfto-amr-plenary-satyapal-2021.pdf72M.RuthandF.Josech,“HydrogenThresholdCostCalculation,”DOEHydrogenandFuelCellTechnologiesOffice,March24,2011.https://www.hydrogen.energy.gov/pdfs/11007_h2_threshold_costs.pdf73Theenergycontentofhydrogenis33kWh/kg,whiletheenergycontentofgasolineis12kWh/kg,basedonthelowerheatingvalue.74Currenthydrogenproductioncostbasedon:U.S.DepartmentofEnergy,“CostofElectrolyticHydrogenProductionwithExistingTechnology,”September22,2020.https://www.hydrogen.energy.gov/pdfs/20004-cost-electrolytic-hydrogen-production.pdf.Projectedcostateconomiesofscaleassumes$460/kWelectrolyzer,basedon:D.Peterson,J.Vickers,andD.DeSantis,“HydrogenProductionCostfromPEMElectrolysis–2019,”U.S.DepartmentofEnergy,3February2020.87U.S.NationalCleanHydrogenStrategyandRoadmaphttps://www.hydrogen.energy.gov/pdfs/19009_h2_production_cost_pem_electrolysis_2019.pdf.Deliveryanddispensingcostsbasedon:N.Rustagi,A.Elgowainy,andJ.Vickers,“CurrentStatusofHydrogenDeliveryandDispensingCostsandPathwaystoFutureCostReductions,”U.S.DepartmentofEnergy,17December2018.https://www.hydrogen.energy.gov/pdfs/18003_current_status_hydrogen_delivery_dispensing_costs.pdfandHydrogenDeliveryScenarioAnalysisModel(https://hdsam.es.anl.gov/index.php?content=hdsam)FuelcellcostsbasedonanalysisfromStrategicAnalysis,Inc.,2021(https://www.hydrogen.energy.gov/pdfs/review21/fc163_james_2021_o.pdf).75InternationalEnergyAgency,“Chemicals,”https://www.iea.org/reports/chemicals.76GuiyanZang,PingpingSun,AmgadElgowainy,andMichaelWang,“TechnoeconomicandLifeCycleAnalysisofSyntheticMethanolProductionfromHydrogenandIndustrialByproductCO2,”EnvironmentalScience&Technology,2021,55(8),5248-5257.https://pubs.acs.org/doi/abs/10.1021/acs.est.0c08237.77X.Liu,A.ElgowainyandM.Wang,“Lifecycleenergyuseandgreenhousegasemissionsofammoniaproductionfromrenewableresourcesandindustrialby-products,”GreenChem.,2020,22,5751-5761.https://pubs.rsc.org/en/content/articlelanding/2020/gc/d0gc02301a.78InternationalEnergyAgency,“IronandSteelTechnologyRoadmap,”October2020.https://www.iea.org/reports/iron-and-steel-technology-roadmap.79A.Elgowainy,“TechnoeconomicandLifeCycleAnalysisofSyntheticFuelsandSteelmaking,”ArgonneNationalLaboratory,Argonne,IL,June2021.https://www.hydrogen.energy.gov/pdfs/review21/sa174_elgowainy_2021_o.pdf.80U.S.EnvironmentalProtectionAgency,“InventoryofU.S.GreenhouseGasEmissionsandSinks:1990-2020,”2022,EPA430-R-22-003.https://www.epa.gov/system/files/documents/2022-04/us-ghg-inventory-2022-main-text.pdf.81U.S.DepartmentofEnergy,“IndustrialDecarbonizationRoadmap,”September2022.https://www.energy.gov/sites/default/files/2022-09/IndustrialDecarbonizationRoadmap.pdf.82InternationalEnergyAgency,“GlobalHydrogenReview2021,”InternationalEnergyAgency,Paris,France,2021.https://iea.blob.core.windows.net/assets/5bd46d7b-906a-4429-abda-e9c507a62341/GlobalHydrogenReview2021.pdf.83U.S.GeologicalSurvey,MineralCommoditySummaries2017,NationalMineralsInformationCenter,Reston,VA,2017.https://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/mcs-2017-nitro.pdf.84U.S.DepartmentofEnergy,“REFUEL,”AdvancedResearchProjectsAgency–Energy.https://arpa-e.energy.gov/technologies/programs/refuel.85InternationalEnergyAgency,“Globalcrudesteelproductionbyprocessrouteandscenario,2019-2050,”8October2020.https://www.iea.org/data-and-statistics/charts/global-crude-steel-production-by-process-route-and-scenario-2019-2050.86AmericanIronandSteelInstitute,“SteelProduction,”https://www.steel.org/steel-technology/steel-production/.87A.Elgowainy,“TechnoeconomicandLifeCycleAnalysisofSyntheticFuelsandSteelmaking,”ArgonneNationalLaboratory.Argonne,IL,June2021,https://www.hydrogen.energy.gov/pdfs/review21/sa174_elgowainy_2021_o.pdf.88U.S.DepartmentofCommerceInternationalTradeAdministration,“SteelImportsReport:UnitedStates,”May2020.https://legacy.trade.gov/steel/countries/pdfs/imports-us.pdf.89TheWhiteHouse,“FACTSHEET:TheUnitedStatesandEuropeanUniontoNegotiateWorld’sFirstCarbon-BasedSectoralArrangementonSteelandAluminumTrade,”October31,2021.https://www.whitehouse.gov/briefing-room/statements-releases/2021/10/31/fact-sheet-the-united-states-and-european-union-to-negotiate-worlds-first-carbon-based-sectoral-arrangement-on-steel-and-aluminum-trade/.90J.BrouwerandL.Mastropasqua,“SolidOxideElectrolysisCells(SOEC)IntegratedwithDirectReducedIron(DRI)PlantsforProducingGreenSteel,”UniversityofCalifornia,Irvine,2021.https://www.hydrogen.energy.gov/pdfs/review21/ta052_brouwer_2021_p.pdf.91R.J.O’Malley,“Grid-InteractiveSteelmakingwithHydrogen(GISH),”MissouriUniversityofScience&Technology,February2021.https://www.hydrogen.energy.gov/pdfs/review21/ta053_omalley_2021_p.pdf.92U.S.DepartmentofEnergy,“AMOSteelIndustryRoundtable,”20February2020.https://www.energy.gov/eere/amo/downloads/amo-88U.S.NationalCleanHydrogenStrategyandRoadmapsteel-industry-roundtable.93U.S.DepartmentofEnergy,“TRANSSFORMWorkshopPresentations,”25October2021.https://www.energy.gov/eere/amo/articles/transsform-workshop-presentations.94U.S.DepartmentofEnergy,“Chapter6:InnovatingCleanEnergyTechnologiesinAdvancedManufacturing,”QuadrennialTechnologyReview,2015.https://www.energy.gov/sites/prod/files/2016/06/f32/QTR2015-6I-Process-Heating.pdf.95U.S.DOE,“HyBlend:OpportunitiesforHydrogenBlendinginNaturalGasPipelines,”https://www.energy.gov/eere/fuelcells/hyblend-opportunities-hydrogen-blending-natural-gas-pipelines.96NREL,“NRELMarksPartnerForumwithDedicationofBioreactor,”August22,2019.https://www.nrel.gov/news/program/2019/nrel-marks-partner-forum-with-dedication-of-bioreactor.html.97C.Lednaetal.,“DecarbonizingMedium-&Heavy-DutyOn-RoadVehicles:Zero-EmissionVehiclesCostAnalysis,”NationalRenewableEnergyLaboratory,March2022.https://www.nrel.gov/docs/fy22osti/82081.pdf98Hunter,et.al.“SpatialandTemporalAnalysisoftheTotalCostofOwnershipforClass8TractorsandClass4ParcelDeliveryTrucks”.NationalRenewableEnergyLaboratory,202.”https://www.nrel.gov/docs/fy21osti/71796.pdf99U.S.DepartmentofEnergy(DOE),theUnitedStatesDepartmentofTransportation(DOT),theUnitedStatesEnvironmentalProtectionAgency(EPA),andtheUnitedStatesDepartmentofHousingandUrbanDevelopment(HUD),TheU.S.NationalBlueprintforTransportationDecarbonization,January20223.https://www.energy.gov/sites/default/files/2023-01/the-us-national-blueprint-for-transportation-decarbonization.pdf100U.S.DepartmentofEnergy,“21stCenturyTruckPartnership,”https://www.energy.gov/eere/vehicles/21st-century-truck-partnership.101U.S.EnvironmentalProtectionAgency,“HydrogenFuelCellVehicles,”https://www.epa.gov/greenvehicles/hydrogen-fuel-cell-vehicles.102M2FCTwaslaunchedbyDOE’sHydrogenandFuelCellTechnologiesOfficein2020andbringstogethernationallabs,industry,andacademiatoachievespecifictargetsforcommercialviabilityoflong-haultrucks.https://millionmilefuelcelltruck.org/.103U.S.DepartmentofEnergy,“DOEAnnouncesNearly$200MilliontoReduceEmissionsfromCarsandTrucks,”1November2021.https://www.energy.gov/articles/doe-announces-nearly-200-million-reduce-emissions-cars-and-trucks.104J.HanlinandE.Brewer,“FuelCellHybridElectricDeliveryVanProject,”CenterforTransportationandtheEnvironment,21May2021.https://www.hydrogen.energy.gov/pdfs/review21/ta016_hanlin_2021_o.pdf.105J.Adams,“TechnologyAccelerationOverview,”U.S.DepartmentofEnergy,7June2021.https://www.hydrogen.energy.gov/pdfs/review21/plenary10_adams_2021_o.pdf.106NationalRenewableEnergyLaboratory,“FuelCellElectricBusEvaluations,”https://www.nrel.gov/hydrogen/fuel-cell-bus-evaluation.html.107TheMaritimeExecutive,“IMOAnswersQuestionsonthe2020SOxRegulation,”2018.https://www.maritime-executive.com/article/imo-answers-questions-on-the-2020-sox-regulation.108O.Merk,“ShippingEmissionsinPorts,”InternationalTransportForum,p.15,2014.https://www.itf-oecd.org/sites/default/files/docs/dp201420.pdf.109InternationalEnergyAgency.“TheFutureofHydrogen.SeizingToday’sOpportunities,”June2019.https://www.iea.org/reports/the-future-of-hydrogen.Note:Thereportrecommendsthatgovernmentsandindustry“makeindustrialportsthenervecentersforscalinguptheuseofcleanhydrogen.”110U.S.DepartmentofEnergy,“H2@PortsWorkshop,”HydrogenandFuelCellTechnologiesOffice.https://www.energy.gov/eere/fuelcells/h2ports-workshop111U.S.DepartmentofTransportation,“FuelCells,”MaritimeEnvironmentalandTechnicalAssistance(META)Program.https://www.maritime.dot.gov/innovation/meta/maritime-environmental-and-technical-assistance-meta-program#Fuel%20Cells.112L.Goodbody,“Medium/HeavyDuty&MarineApplicationsforHydrogenandFuelCellsinCalifornia,”November4,2019.https://www.hydrogen.energy.gov/pdfs/htac_nov19_04_goodbody.pdf.113N.Pal,“SFWaterfrontMaritimeHydrogenDemonstrationProject,”U.S.DepartmentofEnergyHydrogenProgramAnnualMeritReview.89U.S.NationalCleanHydrogenStrategyandRoadmaphttps://www.hydrogen.energy.gov/pdfs/review22/ta045_pal_2022_o.pdf.114TheWhiteHouse,“FACTSHEET:BidenAdministrationAdvancestheFutureofSustainableFuelsinAmericanAviation,”9September2021.https://www.whitehouse.gov/briefing-room/statements-releases/2021/09/09/fact-sheet-biden-administration-advances-the-future-of-sustainable-fuels-in-american-aviation/.115FederalAviationAdministration,“AviationClimateActionPlan,”November2021.https://www.faa.gov/sustainability/aviation-climate-action-plan.116U.S.DepartmentofEnergy,“SustainableAviationFuelGrandChallenge,”https://www.energy.gov/eere/bioenergy/sustainable-aviation-fuel-grand-challenge.117ASTMInternational,“StandardSpecificationforAviationTurbineFuelContainingSynthesizedHydrocarbons,”July15,2021.https://www.astm.org/d7566-21.html.118K.Swider-Lyons,“HydrogenFuelCellsforSmallUnmannedAirVehicles,”U.S.NavalResearchLaboratory,May26,2016.https://www.energy.gov/sites/prod/files/2016/05/f32/fcto_webinarslides_h2_fc_small_unmanned_air_vehicles_052616.pdf.119ZeroAvia,“ZeroAvia&OttoAviationPartnertoDeliverFirstNewAirframeDesignwithHydrogen-ElectricEngineOption,”15June2022.https://www.zeroavia.com/otto-aviation.120C.RyanandS.Philip,“Airbusturbopropdesigngainingfavorasfirsthydrogenplane,”Bloomberg,February11,2021.https://www.bloomberg.com/news/articles/2021-02-11/airbus-turboprop-design-gaining-favor-as-first-hydrogen-plane.121ArgonneNationalLaboratory,“H2@AirportsWorkshopReport,”November2020.https://www.anl.gov/aet/reference/h2airports-workshop-report.122FederalRailroadAdministration,“FreightRailOverview,”U.S.DepartmentofTransportation.https://railroads.dot.gov/rail-network-development/freight-rail-overview.123U.S.EnvironmentalProtectionAgency,“FastFactsonTransportationGreenhouseGasEmissions,”https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions.124Alstom,“Alstom'sCoradiaiLinthydrogentrainrunsforthefirsttimeinFrance,”Sept.6,2022.https://www.alstom.com/press-releases-news/2021/9/alstoms-coradia-ilint-hydrogen-train-runs-first-time-france.125SanBernadinoCountyTransportationAuthority,“Green-TechfortheUS:StadlerSignsFirstEverContractforHydrogen-PoweredTrain,”November14,2019.https://www.gosbcta.com/green-tech-for-the-us-stadler-signs-first-ever-contract-for-hydrogen-powered-train/.126U.S.DepartmentofEnergy,“H2@RailWorkshop,”August2019.https://www.energy.gov/eere/fuelcells/h2rail-workshop.127R.K.Ahluwalia,J-KPeng,F.Cetinbas,D.D.Papadias,X.Wang,J.Kopasz,andT.Krause,“Rail,Aviation,andMaritimeMetrics,”ArgonneNationalLaboratory,Argonne,IL,June2021.https://www.hydrogen.energy.gov/pdfs/review21/ta034_ahluwalia_2021_o.pdf.128T.Krause,D.Papadias,R.Ahluwalia,J-KPeng,andG.Moreland,“TotalCostofOwnershipandHydrogenDemandforFuelCell-PoweredRailroadLocomotives,”TransportationResearchBoardAnnualMeeting,29January2021.https://annualmeeting.mytrb.org/OnlineProgramArchive/Details/15394.129U.S.DepartmentofEnergy,“Tri-GenerationSuccessStory,”December,2016,https://www.energy.gov/sites/default/files/2016/12/f34/fcto_fountain_valley_success_story.pdf130U.S.DepartmentofEnergy,“DurabilityWorkingGroup,”https://www.energy.gov/eere/fuelcells/durability-working-group.131U.S.DepartmentofEnergy,“ReversibleFuelCellsWorkshop,”https://www.energy.gov/eere/fuelcells/reversible-fuel-cells-workshop.132U.S.DepartmentofEnergy,“EarlyMarkets:FuelCellsforBackupPower,”October2014.https://www.energy.gov/sites/prod/files/2014/10/f19/ftco_early_mkts_fc_backup_power_fact_sheet.pdf.133P.Denholm,W.Cole,A.W.Frazier,K.Podkaminer,andN.Blair,“TheFourPhasesofStorageDeployment:AFrameworkfortheExpandingRoleofStorageintheU.S.PowerSystem,”NationalRenewableEnergyLaboratory,Golden,CO,2021.https://www.nrel.gov/docs/fy21osti/77480.pdf.134A.W.Frazier,W.Cole,P.Denholm,S.Machen,N.Gates,andN.Blair,“StorageFuturesStudy:EconomicPotentialofDiurnalStorageintheU.S.PowerSector,”NationalRenewableEnergyLaboratory,Golden,CO,NREL/TP-6A20-77449.90U.S.NationalCleanHydrogenStrategyandRoadmaphttps://www.nrel.gov/docs/fy21osti/77449.pdf.135https://fuelcellsworks.com/news/nextera-sets-goal-of-16gw-of-green-hydrogen-power-stations-in-florida/136NationalRenewableEnergyLaboratory,“ARIES:AdvancedResearchonIntegratedEnergySystems,”https://www.nrel.gov/aries/.137U.S.DepartmentofEnergy,“AdvancedTurbineSystems,”https://www.energy.gov/fecm/science-innovation/clean-coal-research/hydrogen-turbines.138J.Adams,“TechnologyAccelerationOverview,”U.S.DepartmentofEnergy,HydrogenAnnualMeritReview,6June2022.https://www.hydrogen.energy.gov/pdfs/review22/plenary8_adams_2022_o.pdf139S.Satyapal,R.Schrecengost,J.Marcinkoski,J.Vetrano,andT.Shrader,“DOEHydrogenProgramPanelDiscussion,”U.S.DepartmentofEnergy,HydrogenAnnualMeritReview,6June2022.https://www.hydrogen.energy.gov/pdfs/review22/plenary5_program_panel_2022_o.pdf140U.S.DepartmentofEnergy,“DOEAnnouncesFirstLoanGuaranteeforaCleanEnergyProjectinNearlyaDecade,”LoanProgramsOffice,28June2022.https://www.energy.gov/articles/doe-announces-first-loan-guarantee-clean-energy-project-nearly-decade141U.S.GeneralServicesAdministration,“FederalFleetReport(FFR)OpenDataSetLibrary,”https://www.gsa.gov/policy-regulations/policy/vehicle-management-policy/federal-fleet-report-ffr-open-data-set-library.142U.S.GeneralServicesAdministration,“GSAProperties,”https://www.gsa.gov/real-estate/gsa-properties.143U.S.DepartmentofEnergy,“CleanHydrogenProductionStandardDraftGuidance,”https://www.hydrogen.energy.gov/clean-hydrogen-production-standard.html144InfrastructureInvestmentandJobsAct,Pub.L.No.117-28,sec.40315,§822(codifiedas42U.S.C.16166(b)(2)(2021).145U.S.DepartmentofEnergy,“TheH2IQHour:LearntousetheGREETModelforEmissionsLifeCycleAnalysis,”Oct.28,2021.https://www.energy.gov/sites/default/files/2021-11/h2iq-hour-10282021.pdf.146ArgonneNationalLaboratory,GREETmodel,https://greet.es.anl.gov/.Updateswillbeprovidedregularlyaspathwaysandassumptionsarerefined.147NationalEnergyTechnologyLaboratory,“ComparisonofCommercial,State-of-the-Art,Fossil-BasedHydrogenProductionTechnologies,”DOE/NETL-2022/3241,12April2022.https://www.netl.doe.gov/projects/files/ComparisonofCommercialStateofArtFossilBasedHydrogenProductionTechnologies_041222.pdf.148InternationalPartnershipforHydrogenandFuelCellsintheEconomy,www.iphe.net.149InternationalPartnershipforHydrogenandFuelCellsintheEconomy,“MethodologyforDeterminingtheGreenhouseGasEmissionsAssociatedwiththeProductionofHydrogen,”October2021.https://www.iphe.net/_files/ugd/45185a_ef588ba32fc54e0eb57b0b7444cfa5f9.pdf.150U.S.DepartmentofTransportationPipelineandHazardousMaterialsSafetyAdministration,NoticeofProposedRulemaking“PipelineSafety:GasPipelineLeakDetectionandRepair,”https://www.federalregister.gov/d/2023-09918151U.S.DepartmentofEnergy,“EnergyEarthshotsInitiative,”https://www.energy.gov/policy/energy-earthshots-initiative.152A.Mayyas,M.Ruth,B.Pivovar,G.Bender,andK.Wipke,“ManufacturingCostAnalysisforProtonExchangeMembraneWaterElectrolyzers,”NationalRenewableEnergyLaboratory,NREL/TP-6A20-72740,August2019.https://www.nrel.gov/docs/fy19osti/72740.pdf.153D.Peterson,J.Vickers,andD.DeSantis,“HydrogenProductionCostfromPEMElectrolysis–2019,”U.S.DepartmentofEnergy,3February2020.https://www.hydrogen.energy.gov/pdfs/19009_h2_production_cost_pem_electrolysis_2019.pdf154U.S.DepartmentofEnergy,“CostofElectrolyticHydrogenProductionwithExistingTechnology,”22September2020.https://www.hydrogen.energy.gov/pdfs/20004-cost-electrolytic-hydrogen-production.pdf.155U.S.DepartmentofEnergy,“HydrogenfromNext-generationElectrolyzersofWater(H2NEW),”https://h2new.energy.gov/.156B.Pivovar,“CurrentStatusof(LowTemperature)ElectrolyzerTechnologyandNeedsforSuccessfulWidespreadCommercializationandMeetingHydrogenShotTargets,”U.S.DepartmentofEnergy,HydrogenShotSummit,September2021.91U.S.NationalCleanHydrogenStrategyandRoadmaphttps://www.energy.gov/sites/default/files/2021-09/h2-shot-summit-panel1-lte-status.pdf157Sun,Pinging,et.al.“TheAnalysisofU.S.RefinerySectorDecarbonizationPotentialandCost”.ArgonneNationalLaboratory,January2023.https://pubs.acs.org/doi/10.1021/acs.est.2c07440158NationalEnergyTechnologyLaboratory,“ComparisonofCommercial,State-of-the-Art,Fossil-BasedHydrogenProductionTechnologies,”NationalEnergyTechnologyLaboratory,Pittsburgh,PA,DOE/NETL-2022/3241,2022.https://www.netl.doe.gov/energy-analysis/details?id=ed4825aa-8f04-4df7-abef-60e564f636c9.159ArgonneGREETPublication:UpdatedNaturalGasPathwaysinGREET2022(anl.gov)160U.S.DepartmentofEnergy,“2022MethanePyrolysisCohortAnnualMeeting,”AdvancedResearchProjectsAgency–Energy,12January2022.https://arpa-e.energy.gov/2022-methane-pyrolysis-cohort-annual-meeting.161U.S.DepartmentofEnergy,“U.S.DepartmentofEnergyAnnounces$28MilliontoDevelopCleanHydrogen,”OfficeofFossilEnergyandCarbonManagement,7February2022.https://www.energy.gov/fecm/articles/us-department-energy-announces-28-million-develop-clean-hydrogen.162U.S.DepartmentofEnergy,“OpenforBusiness:LPOIssuesNewConditionalCommitmentforLoanGuarantee,”LoanProgramsOffice,23December2021.https://www.energy.gov/lpo/articles/open-business-lpo-issues-new-conditional-commitment-loan-guarantee.163https://www.energy.gov/lpo/articles/revisiting-prior-conditional-commitments-monolithtm-inc164https://www.whitehouse.gov/wp-content/uploads/2021/11/US-Methane-Emissions-Reduction-Action-Plan-1.pdf165AirProducts,“LandmarkU.S.$4.5BillionLouisianaCleanEnergyComplex,”AirProducts.https://www.airproducts.com/campaigns/la-blue-hydrogen-project.166AscensionParish,wheretheproject,hasCensusTractsdefinedasaDACbytheClimateandEconomicJusticeScreeningTool;https://screeningtool.geoplatform.gov/en/#10.78/30.1098/-91.0479.167GreenPlains,“GreenPlainsAnnouncesCarbonSequestrationPartnershipwithSummitCarbonSolutions,”18February2021.https://www.globenewswire.com/news-release/2021/02/18/2178062/0/en/Green-Plains-Announces-Carbon-Sequestration-Partnership-with-Summit-Carbon-Solutions.html168CongressionalResearchService,“TheTaxCreditforCarbonSequestration(Section45Q),”8June2021.https://sgp.fas.org/crs/misc/IF11455.pdf.169DepartmentofEnergy,SecuringAmerica’sCleanEnergySupplyChain,2022.https://www.energy.gov/policy/securing-americas-clean-energy-supply-chain.170U.S.DepartmentoftheTreasury,“AdditionalGuidancefortheQualifyingAdvancedEnergyProjectCreditAllocationProgramunderSection48C(e),”InternalRevenueService,https://www.irs.gov/pub/irs-drop/n-23-44.pdf171https://www.irs.gov/pub/irs-drop/n-23-18.pdf172Hydrogenproductioncostsbasedonhigh-temperatureelectrolysisandassuming$0.03/kWhelectricity:D.Peterson,J.Vickers,andD.DeSantis,“HydrogenProductionCostfromHighTemperatureElectrolysis–2020,”U.S.DepartmentofEnergy,14February2020.https://www.hydrogen.energy.gov/pdfs/20006-production-cost-high-temperature-electrolysis.pdf.HydrogenfuelingstationcostsdevelopedusingHydrogenDeliveryScenarioAnalysisModel:ArgonneNationalLaboratory,“HydrogenDeliveryScenarioAnalysisModel(HDSAM),”https://hdsam.es.anl.gov/index.php?content=hdsam.Hydrogenstoragecostsbasedon:M.KolyvaandN.Rustagi,“HydrogenDeliveryandDispensingCost,”U.S.DepartmentofEnergy,2October2020.https://www.hydrogen.energy.gov/pdfs/20007-hydrogen-delivery-dispensing-cost.pdf.173U.S.DepartmentofEnergy,“DOEUpdateonHydrogenShot,RFIResults,andSummaryofHydrogenProvisionsintheBipartisanInfrastructureLawDepartmentofEnergy,”December9,2021.https://www.energy.gov/eere/fuelcells/articles/doe-update-hydrogen-shot-rfi-results-and-summary-hydrogen-provisions174U.S.DepartmentofEnergy,“HydrogenShotSummit,”https://www.energy.gov/eere/fuelcells/hydrogen-shot-summit.175U.S.DepartmentofEnergy,“2021HydrogenandFuelCellTechnologiesOfficeWebinarArchives,”https://www.energy.gov/eere/fuelcells/2021-hydrogen-and-fuel-cell-technologies-office-webinar-archives#12082021.92U.S.NationalCleanHydrogenStrategyandRoadmap176E.Connelly,M.Penev,A.Milbrandt,B.Roberts,N.Gilroy,andM.Melaina,“ResourceAssessmentforHydrogenProduction,”NationalRenewableEnergyLaboratory,Golden,CO,NREL/TP-5400-77198.https://www.nrel.gov/docs/fy20osti/77198.pdf.177Toproduce10MMTofhydrogenviarenewableornuclearelectrolysisalone,thetotalwaterrequirementwouldbeapproximately29-650billiongallons(dependingonthetypeofpowergenerationused),representing0.03%-0.6%ofannualU.S.freshwaterwithdrawals.E.Connelly,M.Penev,A.Milbrandt,B.Roberts,N.Gilroy,andM.Melaina,“ResourceAssessmentforHydrogenProduction,”NationalRenewableEnergyLaboratory,Golden,CO,NREL/TP-5400-77198.https://www.nrel.gov/docs/fy20osti/77198.pdf.178C.Hunter,M.Penev,E.Reznicek,J.Eichman,N.Rustagi,andS.Baldwin,“Techno-economicanalysisoflong-durationenergystorageandflexiblepowergenerationtechnologiestosupporthigh-variablerenewableenergygrids,”Joule5,2077–2101,August18,2021.https://www.cell.com/joule/pdf/S2542-4351(21)00306-8.pdf.179J.E.FesmireandA.Swanger,“OverviewoftheNewLH2SphereatNASAKennedySpaceCenter,”August18,2021.https://www.energy.gov/sites/default/files/2021-10/new-lh2-sphere.pdf.180NationalEnergyTechnologyLaboratory,“SubsurfaceHydrogenAssessment,Storage,andTechnologyAcceleration,"2022.https://edx.netl.doe.gov/shasta/181NationalEnergyTechnologyLaboratory,PacificNorthwestNationalLaboratory,andLawrenceLivermoreNationalLaboratory,SubsurfaceHydrogenandNaturalGasStorage:StateofKnowledgeandResearchRecommendationsReport,DOE/NETL-2022/3236,NETLTechnicalReportSeries,U.S.DepartmentofEnergy,NationalEnergyTechnologyLaboratory:Morgantown,WV,2022;p.6.https://www.netl.doe.gov/projects/files/SubsurfaceHydrogenandNaturalGasStorageStateofKnowledgeandResearchRecommendationsReport_041122.pdf.ImagesofAlaskaandHawaiitobehostedatImages–SHASTA(doe.gov)182G.F.Teletzkeetal.,“EvaluationofPracticableSubsurfaceCO2StorageCapacityandPotentialCO2TransportationNetworks,”OnshoreNorthAmerica,14thGreenhouseGasControlTechnologiesConference,Melbourne,October2018.https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3366176.183H.Pilorge,adaptedfrom:P.Psarrasetal.,“CarbonCaptureandUtilizationintheIndustrialSector,”Environ.Sci.Technol.2017,51,19,11440–11449.https://doi.org/10.1021/acs.est.7b01723.184Forexample,seeDOE’sOfficeofSciencereport:U.S.DepartmentofEnergy,“BasicEnergySciencesRoundtableFoundationalScienceforCarbon-NeutralHydrogenTechnologies,”2021.https://science.osti.gov/-/media/bes/pdf/reports/2021/Hydrogen_Roundtable_Brochure.pdf?la=en&hash=08CACFB80F803504B7D6C629FEB1426BBD6CBF69.185U.S.DepartmentofLabor,“PrevailingWageandtheInflationReductionAct,”WageandHourDivision.https://www.dol.gov/agencies/whd/IRA186InfrastructureInvestmentandJobsAct,Pub.L.No.117-28,sec.40313,§805(j)(codifiedas42U.S.C.16154(j)(2021).187CouncilonEnvironmentalQuality,“ClimateandEconomicJusticeScreeningTool,”November22,2022.https://screeningtool.geoplatform.gov/188U.S.DepartmentofEnergy,“WaterElectrolyzersandFuelCellsSupplyChain:U.S.DepartmentofEnergyResponsetoExecutiveOrder14017,‘America’sSupplyChains,’”February24,2022.https://www.energy.gov/sites/default/files/2022-02/Fuel%20Cells%20%26%20Electrolyzers%20Supply%20Chain%20Report%20-%20Final.pdf189https://eere-exchange.energy.gov/Default.aspx#FoaIda9a89bda-618a-4f13-83f4-9b9b418c04dc190TheWhiteHouse,ExecutiveOrderonDiversity,Equity,Inclusion,andAccessibilityintheFederalWorkforce,June25,22021.https://www.whitehouse.gov/briefing-room/presidential-actions/2021/06/25/executive-order-on-diversity-equity-inclusion-and-accessibility-in-the-Federal-workforce/.191TheWhiteHouse,ExecutiveOrderonEstablishmentoftheWhiteHouseGenderPolicyCouncil,March8,2021.https://www.whitehouse.gov/briefing-room/presidential-actions/2021/03/08/executive-order-on-establishment-of-the-white-house-gender-policy-council/.192TheWhiteHouse,ExecutiveOrderonTacklingtheClimateCrisisatHomeandAbroad,January27,2021.https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/27/executive-order-on-tackling-the-climate-crisis-at-home-and-abroad/.193OtherrecentroadmapspublishedbyDOE,suchastheCommercialPathwaysLiftoffReportshaveevaluatedthepotentialforjobcreation93U.S.NationalCleanHydrogenStrategyandRoadmapinthehydrogenindustryundervariousfuturescenarios,aswellasthetotalfinancialinvestmentneededforthesescenariostomaterialize.Theseestimateswillberefinedasdataisgatheredfromongoingandfuturedeployments,suchasthoseinsupportoftheBILandIRA.194A.R.Bairdetal.,“FederalOversightofHydrogenSystems,“SandiaNationalLaboratory,SAND2021-2955,March2021.https://energy.sandia.gov/wp-content/uploads/2021/03/H2-Regulatory-Map-Report_SAND2021-2955.pdf195C.Ledna,M.Muratori,A.Yip,P.Jadun,andC.Hoehne,“DecarbonizingMedium-&Heavy-DutyOn-RoadVehicles:Zero-EmissionVehiclesCostAnalysis,”NationalRenewableEnergyLaboratory,March2022.https://www.nrel.gov/docs/fy22osti/82081.pdf.196UmairIrfan,“HowtosavetheplanetfromthelargestvehiclesonEarth,”Vox,April21,2022.https://www.vox.com/recode/22973218/container-shipping-industry-climate-change-emissions-maersk.197U.S.DepartmentofEnergy,“InternalandExternalCoordinationandCollaboration,”DepartmentofEnergyHydrogenProgramPlan,Nov2020,pp.36-43.https://www.hydrogen.energy.gov/pdfs/hydrogen-program-plan-2020.pdf.198HydrogenandFuelCellsInteragencyActionPlan,2011,https://www.hydrogen.energy.gov/pdfs/hydrogen_fuelcell_interagency_action_plan.pdf199Examplesofglobalpartnershipsinvolvinghydrogenincludebutarenotlimitedto:IEA(InternationalEnergyAgency)launchedinthe1974;IPHE(InternationalPartnershipforHydrogenandFuelCellsintheEconomy)launchedbytheU.S.in2003(withNetherlandsascurrentChair,U.S.andJapanasVice-Chairs);IRENA,launchedin2009;HEM(HydrogenEnergyMinisterial)launchedbyJapanin2018;theHydrogenCouncil,launchedbyindustryin2017;CEM(CleanEnergyMinisterial)HydrogenInitiativelaunchedbyCanadain2019(withtheEuropeanCommission,Japan,Netherlands,andU.S.asco-leads),MI(MissionInnovation)CleanHydrogenMissionlaunchedbytheUKin2021(withAustralia,Chile,EC,SaudiArabia,andU.S.asco-leads).200InternationalEnergyAgency,“TheFutureofHydrogen.SeizingToday’sOpportunities,”June2019.https://www.iea.org/reports/the-future-of-hydrogen.201MinistryofEconomy,TradeandIndustry(METI).”FifthHydrogenEnergyMinisterialHeld,”October7,2022.https://www.meti.go.jp/english/press/2022/1007_001.html202CleanEnergyMinisterial.“H2InitiativeLaunchesH2TwinCitiesProgramCleanEnergyMinisterial.”https://www.cleanenergyministerial.org/h2-initiative-launches-h2-twin-cities-program/203Furthertechnicaldetailsandappendicesmaybemadeavailableatwww.hydrogen.energy.govtoprovidetransparencyandthemostup-to-dateinformationtostakeholdersandthepublic.94U.S.NationalCleanHydrogenStrategyandRoadmapAppendixA:SupplementaryInformationandAnalysisDOErecentlypublishedthePathwaystoCommercialLiftoff:CleanHydrogen(Pathwaysreport),whichwasformedusingextensivestakeholderfeedbackandnewanalysistocharacterizethemarketpotentialforhydrogeninthenear-andlong-term.ThePathwaysreportprovidesmarketandinvestmentperspectiveinthefollowingphases:Near-termexpansion:Inspectsrisksanduncertaintiesofearlymarketintroduction,consideringmatchingsupplyanddemandgeographicallywithlimitedconnectiveinfrastructure,hydrogenofftakeuncertainties,manufacturingsupplychains,permittingandworkforcechallenges.Industrialscaling:ConsidersbarriersremainingafterIRAsubsidyperiodandimpactofemergingcleanelectricityeconomicsontheprevailinghydrogenproductionpathways.Duringthisphase,financingscaleandcreditriskwillbesubjecttotheremainingmarketbarriersafteranIRAsunset.Long-termgrowth:ThisphasewillbefueledbycostreductionsachievedthroughIRAperiod.Emergingfinancingstructuresandmarkethistorywillstreamlinecapitalprocurementandriskmanagement.Thereportenvisionsa2030landscapeforlow-costcleanhydrogenbecomingintegralcomponentforindustrial,transportationandgasreplacementuses.Readersareencouragedtoexplorethereportforarigorousdescriptionofmarketopportunitiesandbarriersforhydrogen.Examplesofkeyresultsdescribedinthereportincluderevenuepotential(FigureA),requiredinvestments(FigureB),demandscenarios(FigureC),andpotentialsupplychainvulnerabilities(FigureD).FigureA:Thehydrogeneconomycouldreach$80–150Bmarketsizeby2050withindustrialandmediumandheavy-dutytransportationaccountingforthemajorityofthemarketshare.Seefigureaboveforarticulationofmarketsizepotentials.95U.S.NationalCleanHydrogenStrategyandRoadmapFigureB.Investmentstoachieveasuccessfulroleofhydrogenandenablingnetzeroby2050arequantifiedthroughtheIRAperiodbetween$105and235Basshowninthefigureabove.Largestinvestmentsareforecastedinhydrogenproduction,followedbymid-streaminfrastructure.Significantinvestmentsneedtobemadeinend-useapplicationstoallowsafeandefficientutilizationofhydrogeninnewandexistingapplications.Whilecleanhydrogenhubinvestmentsviathebipartisaninfrastructurelawprovideaninitialboostininvestments,asubsequentgapof85-215remain.Suchinvestmentcouldbecatalyzedbycostreductionsandde-riskingfromIRAandBILactivities.96U.S.NationalCleanHydrogenStrategyandRoadmapFigureC:HydrogenuptakescenariosconsideredinthePathwaysReportwithmarketattribution.FigureD:Supplychainvulnerabilitiesassessmentforproduction(upstream),transmission&distribution(midstream),andselectenduses(downstream).97